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* Our Path Towards Developing Machine Learning Applications

 An Overview of Power System Digital Twin-based Approach
— Configurations and design considerations of the PARS platform
— Unigqueness of the digital-twin based approach

 Machine Learning Applications in Digital-twin Development
— Synthetic Data and Scenarios generation
— Parameterization
— Co-simulation
— Automated forecasting methods
— Control and energy management systems modeling
— Faster-than-real-time response option selection
— Anomaly detection: natural or man-made errors and cyber attacks

e Conclusions
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FREEDM Center
GridWrx Lab

* Our Path Towards Developing Machine Learning Applications
 An Overview of Power System Digital Twin-based Approach

Configurations and design considerations of the PARS platform
What is the digital-twin based approach?

 Machine Learning Applications in Digital-twin Development

Synthetic Data and Topology Generation (empirical and GAN-based Methods)
Parameterization

Co-simulation

Automated forecasting methods (Meta-learning, TCN)

Control and energy management systems modeling (Reinforcement Learning)
Faster-than-real-time response option selection

Anomaly detection: natural or man-made errors and cyber attacks

e Conclusions
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NC STATE UNIVERSITY  Our Path Towards Developing Machine Learning Appligafiorise
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NC STATE UNIVERSITY  Our Path Towards Developing Machine Learning Appligafiorise

7. ProfileSR-GAN: A GAN based Super-
Resolution Method for Generating
High-Resolution Load Profiles

Lidong Song

8. GAN-based load profile
generation method

4. FeederGAN: Synthetic Feeder
Topology Generation via Deep
Graph Adversarial Nets

Ming Liang Yi Hu

2023 —

9. Other ongoing Activities:
* Parameterization

* Baseline Quantification
¢ Anomaly Detection
Load Disaggregation

2020 2021 —— 2022

-

Si Zhang

Y-ao Meng

Yiyan Li

Gonzague Henri

3. Time Series
Classification for
Locating Forced
Oscillation Sources

5. A meta-learning based
distribution system load
forecasting model selection

7. A Two-stage
Training Strategy for
Reinforcement

1. A supervised machine
learning approach to control
energy storage devices

2. A Multi-Agent Shared
Machine Learning
Approach for Real-time
Battery Operation Mode
Prediction and Control
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An Overview of the Digital twin based
co-simulation platform

1. Configurations and design considerations
2. What is a digital-twin based approach
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Ne STATE UNIVERSITY  PARS: Key Design Considerations SridWrx Lab

Develop a Photovoltaic (PV) Analysis and Response Support (PARS) platform as a pOwer grid digital
twin that provides real-time situational awareness and optimal response plan selection.

An OPAL-RT based Real-time PARS Platform
| +

Transmission Grid Model

Highly Scalable Operation e e ) eMEGASIM =L =

Model Tool

.o o L] l [: [ ] L] L o
ngh F|deI|ty (PARS-OMT) e \. VISIbI'Ity
Grid-forming: CPAASORSIML 4™ — Real-time Machine Learning
ps-level EMT domain | Transmission-HIL perbonene Situation h df ti
Grid-following: ePHASORSIM " eMEGASIM Awareness bl il
Ms-level phasor domain i}'_i"_.,-'u"m — y Tool 7
Power Management: | Distribution-HIL Py - (PARS-RTSAT) Secure by Design
Intra 5-min quasi-steady-state DER layer
Energy Management: eMEGASIM
5-Minute to 24-ahead DER-HIL [:3?: I
B Database _J—
e g Cost-benefit
Rea|IStIC Modt-lzl . Optimal Tool o
Realistic network models - Pa’amiterl'zat"’“ Response Tool [« (PARS-CBT)
_ . 00 3
Realistic PV and load profiles (PARS-MPT) (PARS-ORT)

Response Options

Faster-than Real-time
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NC STATE UNIVERSITY  PARS: Key Design Considerations o

Develop a Photovoltaic (PV) Analysis and Response Support (PARS) platform as a POWer grid digital
twin that provides real-time situational awareness and optimal response plan selection.

An OPAL-RT based Real-time PARS Platform
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NC STATE UNIVERSITY  PARS: three Main Platforms st

HIL: Hardware-in-the-loop

An OPAL-RT based Real-time PARS Platform
| 1

Transmission Grid Model
1. PARS Real-time HIL operaon ‘ CSMECRS L= 2. Situation Awareness
. I ti I tf (PARS-OMT) ‘ \ — ]
simuiation piatrorm PHASORSIM 7 —
PP N eal-time . . -
Transmission-HIL O :;t:';u:;";"d Situation Requ"ement' Monitor the

Requirement: Modeling the 5T p| AWaeness | currentstatus, fOfecaSt the

operation of interconnected Distribution-HIL A (PARS-RTSAT) future, authenticate the data,

physical systems in high-fidelity DER fayer detect anomalies.
eMEGASIM
DER-HIL —

Approaches: _’|_,_Eata_basg_f_]— Approach:

1. Populate the model with - - T 1. Meta-learning for
synthetic data and [ owirdatabwse | Model I_ Optimal Tool |« generalizable tool sets
topology R NS Pa'am:;i’:“““ Response Tool | (PARS-CBT) 2. TCN for capturing spatial and

(PARS-MPT) e temporal correlation

2. Develop automated
parameterization

3. Faster-than-real-time Optimal Response Tool (External to the HIL)
Requirement: energy and power management and response options (from 24-hour ahead to intra-hour to real-time)
Approaches: 1) Optimization, and 2) Machine learning based (reinforcement learning for adaptability)
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NC STATE UNIVERSITY ~ Digital Twins versus Conventional Models CridWie Lab

Reference Modeling Considerations Synchronization Communication
[1] Electromagnetic transients + phasor model Yes N/A
[2] Electromagnetic transients + phasor model Yes N/A
[3] Phasor model Yes Wireless communication simulator
[4] Electromagnetic transients + hardware Asynchronous N/A
[5] Phasor model + hardware Asynchronous JSON-link over Ethernet
Electromagnetic transients + phasor model + 1. Modbus
Digital Twin  hardware + Parameter Updates 2. File-shared over Ethernet
based Approach + Communication Links Asynchronous 3. VPN connections required for
[6-10] + Forecast the Model Evolutions implementation of multi-area
+ Energy/Power Management Systems networked digital twins
1. Plumier, Frédéric, et al. "Co-simulation of electromagnetic transients and phasor models: A relaxation approach." IEEE Transactions on Power Delivery 31.5 (2016): 2360-2369.
2. Palmintier, Bryan, et al. "Design of the HELICS highperformance transmission-distribution-communication-market co-simulation framework." Proc. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, Pittsburgh, PA.
2017.
3. Godfrey, Tim, et al. "Modeling smart grid applications with cosimulation.“ Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on. IEEE, 2010.
4, Godfrey, Tim, et al. "Modeling smart grid applications with cosimulation.“ Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on. IEEE, 2010.
5. Palmintier, Bryan, et al. "A power hardware-in-the-loop platform with remote distribution circuit cosimulation." IEEE Transactions on Industrial Electronics 62.4 (2015): 2236-2245.
6. F. Xie, H. Yu, Q. Long, W. Zeng and N. Lu, "Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications," in IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2396-2406, May 2020,
doi: 10.1109/TSG.2019.2953718.
7. F. Xie, C. McEntee, M. Zhang, B. Mather and N. Lu, "Development of an Encoding Method on a Co-Simulation Platform for Mitigating the Impact of Unreliable Communication," in IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2496-2507,
May 2021, doi: 10.1109/TSG.2020.3039949. Videos related with the paper: https://www.youtube.com/watch?v=SdibDKEpw60.
8. F. Xie et al., "Networked HIL Simulation System for Modeling Large-scale Power Systems," 2020 52nd North American Power Symposium (NAPS), 2021, pp. 1-6, doi: 10.1109/NAPS50074.2021.9449646.
9. Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, “A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources,” 22PESGM1399, submitted to 2022 PES General meeting.

Available online at: https://arxiv.org/pdf/2111.09464.pdf
10. Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, “Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations,” 22PESGM1449, submitted to 2022 IEEE PESGM. Available online at: https://arxiv.org/pdf/2111.10031.pdf
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1. Q.long, H.Yu,F. Xie, N. Lu and D. Lubkeman, "Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-Constrained Levenberg-Marquardt Algorithm,"
in IEEE Transactions on Smart Grid, doi: 10.1109/T5G.2020.3026617.

2. F.Xie, H. Yu, Q. Long, W. Zeng and N. Lu, "Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications," in IEEE
Transactions on Smart Grid, vol. 11, no. 3, pp. 2396-2406, May 2020, doi: 10.1109/T75G.2019.2953718.

3.  F.Xie, C. McEntee, M. Zhang, B. Mather and N. Lu, "Development of an Encoding Method on a Co-Simulation Platform for Mitigating the Impact of Unreliable Communication," in
IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2496-2507, May 2021, doi: 10.1109/TSG.2020.3039949. Videos related with the paper:
https://www.youtube.com/watch?v=SdibDKEpw60

4.  F. Xie et al., "Networked HIL Simulation System for Modeling Large-scale Power Systems," 2020 52nd North American Power Symposium (NAPS), 2021, pp. 1-6, doi:
10.1109/NAPS50074.2021.9449646.

5. F.Xie, C. McEntee, M. Zhang and N. Lu, "An Asynchronous Real-time Co-simulation Platform for Modeling Interaction between Microgrids and Power Distribution Systems," Proc. of
2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5, doi: 10.1109/PESGM40551.2019.8973802.

6.  Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, “Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations,” submitted to 2022 IEEE PESGM.
https://arxiv.org/pdf/2111.10031.pdf

7.  Victor Paduani, Lidong Song, Bei Xu, Dr. Ning Lu, "Maximum Power Reference Tracking Algorithm for Power Curtailment of Photovoltaic Systems", Proc. of IEEE PES 2021 General
Meeting. 2021. arXiv preprint arXiv:2011.09555.

8.  Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, “A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources,”
submitted to 2022 PES General meeting. https://arxiv.org/pdf/2111.09464.pdf

9. LongQian, Hui Yu, Fuhong Xie, Wenti Zeng, Srdjan Lukic, Ning Lu, and David Lubkeman., "Microgrid Power Flow Control with Integrated Battery Management Functions," Proc. of
2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281437.

10. Sun, Tiankui, Jian Lu, Zhimin Li, David Lubkeman, and Ning Lu. "Modeling Combined Heat and Power Systems for Microgrid Applications." IEEE Transactions on Smart Grid, Jan. 2017.

11. Nguyen, Quan, Jim Ogle, Xiaoyuan Fan, Xinda Ke, Mallikarjuna R. Vallem, Nader Samaan, and Ning Lu. "EMS and DMS Integration of the Coordinative Real-time Sub-Transmission
Volt-Var Control Tool under High DER Penetration." arXiv preprint arXiv:2103.10511 (2021).

12. Ke, Xinda, Nader Samaan, Jesse Holzer, Renke Huang, Bharat Vyakaranam, Mallikarjuna Vallem, Marcelo Elizondo et al. "Coordinative real-time sub-transmission volt—var control for
reactive power regulation between transmission and distribution systems." IET Generation, Transmission & Distribution (2018).

13. Nader Samaan, Marcelo A. Elizondo, Bharat Vyakaranam, Mallikarjuna R. Vallem, Xinda Ke, Renke Huang, Jesse T. Holzer, Siddharth Sridhar, Quan Nguyen, Yuri V. Makarov, Xiangqi
Zhu, Jiyu Wang, and Ning Lu, "Combined Transmission and Distribution Test System to Study High Penetration of Distributed Solar Generation," Proc. of IEEE/PES Transmission and
Distribution Conference and Exposition, 2018.
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NC STATE UNIVERSITY FREEDM Center

GridWrx Lab

Big-Data in Digital-twin Development

Synthetic Data and Topology Generation (GAN-based Methods)
Parameterization (Regression or Clustering)

Co-simulation

Automated forecasting methods (Meta-learning, TCN)

Control and energy management systems modeling (Reinforcement Learning)
Faster-than-real-time response option selection

Anomaly detection: natural or man-made errors and cyber attacks

Nounkswn e
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Nec STATE UNIVERSITY  Challenges in Data Acquisition Y

« Data are collected and stored in different places with different format and

with different data qualities
— Across a few departments
— Dependent of applications

 Proprietary Information that are sensitive and it is difficult if not possible
for utilities to share their data with the academia
— Privacy
— Security
 As aresult, only a small amount of data are sharable
— Insufficient for testing and validating the developed methodologies
— Hard to transfer knowledge learnt from one case to another

10/18/2022 Dr. Ning Lu North Caroline State University 14



NC STATEUNIVERSITY  Synthetic Data Generation D

* Acquisition and sharing of actual data sets are extremely hard

Proprietary, Privacy, Security

 Generate realistic synthetic data for power system digital twins

10/18/2022

Topology and time series load and PV profiles

Generate from actual data sets and network models

A transparent modeling process with customizable parameters

Can cover a large amount of operation conditions and network topology variations

Dr. Ning Lu North Caroline State University 15



NC STATE UNIVERSITY FREEDM Center

GridWrx Lab

Part 1. Load Disaggregation Methods

1. Feeder Load Disaggregation

Wang, Jiyu, Xianggi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A
Data-Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method." IEEE Transactions on
Smart Grid 11, no. 6 (2020): 5396-5406.

2. HVAC Load Disaggregation
ﬂ v .s . . . H H “
¥ % Hyeonjin Kim, Kai Ye, Han Pyo Lee, Rongxing Hu, Di Wu, PJ Rehm, and Ning LU, “An ICA-Based HVAC Load
' Disaggregation Method Using Smart Meter Data” submitted to 2023 ISGT. Available online at:
¥ https://arxiv.org/abs/2209.09165

Ming Liang, Jiyu Wang, Yao Meng, Ning LU, David Lubkeman, and Andrew Kling. "A Sequential Energy
Disaggregation Method using Low-resolution Smart Meter Data, " Proc. of IEEE Innovative Smart Grid
Technologies, Washington DC, 2019.
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NC STATE UNIVERSITY  |n the past — No diversity e Lo
Feeder Head Load Profile

Power
A

In the past:

* Feeder head data is
recorded at the substation

e Sub-nodes load profiles are
not measured

e Use the same load profile
for all sub-nodes Time of the day (hour)

decompose

v

;___'__
#___,__

Time of the
day (hour)
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NC STATE UNIVERSITY  Digital Twin: diversified and realistic profiles e Ve

GridWrx Lab
Known Feeder Head Load Profile

Power
A

In the past: using the same load
profile for all sub-nodes

v

Now: Diversified load profiles

generated by smart meter data. Time of the day (hour)
Disaggregate
Power Power Power Power
o G SN W L
1 1 ! 1 1 1 1 1 | b |
1 1 1 I 1 1 | 1
1 1 :k 1 1 ' 1 1 ' \ | :;
Time of the Time of the Time of the Time of the
day (hour) day (hour) day (hour) day (hour)

Nodal Load Profile
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NC STATE UNIVERSITY Improve the Realisticness of Load Models FREEDI Center

GridWrx Lab
. e From the Known feeder-head load profile b il ook
Goal: Generate diversified load L% |
profiles using smart meter data. 00 o
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1 1 ! o

= s 1 1 o 14

g g~V VN ¢ £
Time of the day (hour) Time of the day (hour) Time of the day (hour)
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NC STATE UNIVERSITY ~ Feeder Load Disaggregation Algorithm (FLDA) "eob e

GridWrx Lab
. . - Smart meter Duration (weekly, Feeder head load |
FLDA-LPS: Load profile selection data montaly, yeary) profile (Preader)
_ F==——E===== F==—=-===S -——=
— Randomly select load profiles | FLDA-LPS oo -
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FLDA-LPA: Load profile allocation [ Dismbuion :
. ) . . | | transformer rating :

— Distribution transformer rating Allocate load profiles in Dgiecteq 10 |

each node based on transformer ratings, |

— LO ad t e load type and square footage 1
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— Square footage — !

i i oo o s o i i e i i o e i -

Fig. 1. Flowchart of the feeder load disaggregation algorithm.
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GridWrx Lab
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GridWrx Lab
. . - Smart meter Duration (weekly, Feeder head load |
FLDA-LPS: Load profile selection data montaly, yeary) profile (Preader)
_ F==——E===== F==—=-===S -——=+
— Randomly select load profiles | FLDA-LPS oo -
— Select pivot-point detsbse @) 1 g, Frandom

¥

Randomly select load profile from D until

|
|
1
|
|
max(Prandom) meet Rtr?;gce;:n 1
1

|

|

|

|

|

1

1

1

P

: random X Preeder
I P tar

1

I

— Select reference load profiles o

Load profile Database

Pivot-point Select load profiles so that Prgpgom +
pairs Pratch = Pfeer.!er at pivot points

QEA%Q

N load profiles are selected

Save selected load
profiles in Dserecreq

o 1
| Distribution 1
3000 | | transformer rating I
Allocate load profiles in Dggjocteq t0
each node based on transformer ratings, |
= 2000 | load type and square footage 1
= Pivot point 1
o 1
©
3 1
1000 | m End
1
i i oo o s o i i e i i o e i -
0 | , : ‘ |
0 N 8 1= 16 20 24 Fig. 1. Flowchart of the feeder load disaggregation algorithm.
Time [hour]
10/18/2022 Wang, Jiyu, Xianggi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time- 22

Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.



NC STATE UNIVERSITY  LPS-Step 1: Pivot point selection FREEDM Center

GridWrx Lab
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—FP Save selected load
3000 feeder 1 . ave se
P andom otpoint2 profiles in Dserecreq
r-r—-——m=—=-=-=-=-=-=-"=-"P=-—-="-""="=-"=-"=-=-=== 1
= 2000 - | Distribution |
i Pivot point 1 | | transformer rating
3 Allocate load profiles in Dggjocteq t0 1
- 1000 - _ each node based on transformer ratings, |
W load type and square footage 1
|
0 1 1 1 1 1 I
0 4 8 12 16 20 24 End I
Time [hour] -
Fig. 2. Pivot points and random load selection. Fig. 1. Flowchart of the feeder load disaggregation algorithm.
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LPS-Step 2: Random Load Profiles Selection

FREEDM Center
GridWrx Lab

Radom load ratio:  Rrindom
1 t 1 t
(1—&) x P8 < max(Prandom) < Py . (10)
1 t .
P ri:jj()m = Rrandom X l'l'lll'l(P feeder)s (1)
where
0< Ryandom = 1.
3000 :E:::::ﬂ ivot point 2
min(Pﬂf(fdﬁ!’) 2000+

oad [k\V]

L=
Pivol point 1
farget

P random 1000 [ m

' D selected

Smart Meter Database
D

4302 sets of smart
meter data with 30-
minute data points

Randomly select load
profiles and put them
into Dselected

!

arget 0
(1—&) x Pi‘andom ﬂ A
0 L 1 L 1 L A Q q 0
0 4 8 12 16 20 24 @ e © E n
Time [hour] O ® L ]
nodes —
Fig. 2. Pivot points and random load selection. 1 2 n
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FREEDM Center

Way 1

LPS-Step 3: Reference load profile

Way 2

GridWrx Lab

(0)
= — (u) (1)
Piar (tn) Pfeeder(fn) P random (tn) (12) w P, (fn)/max(PMr (fn))
(u+1) (1) () Prr ) = oy max () (o)
Piar " (tn) = Pigr(tn) — Py’ (1). (13) DA Dl
(u) (_pp (1)
w(pr \ _ () P, ( mk) = max (P,,e (rn)), (18)
Piar (o) = max(Pig:(t) ), (14) AN f
Piap\ froiey ) = min( Prg, (1) ). (15)
Actual feeder head load profile
5000 —— Aggregated load profile of selected houses g 10000 tar _ random
Target profile after random selection = Vall " N Pfeeder - Pfeeder - feeder
@ alley pivot point
4000 = e . . I —
Pfeeder 0 4 8 12 16 20 24
- Np
3000 =
< Ptar ;10000 PD — Z Pm-
=3 d s —
g 2000 Jeeder 7000 I . Po m=1
S 0 4 8 12 16 20 24
|: % ar Boak o - ._pml
1000 prandom 5 p:?m pive Valley pivot
feeder § 2 point
0 1 I I I 1 1 0 4 8 12 1‘5 20 = 24
0 1 2 3 4 5 6 7 Time [hour]
Time [Day] Fig. 3. Pivot points selected using the Target and Reference load profiles.
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NC STATE UNIVERSITY LPS-Step 4: Select Profiles with the Similarity Index

At each matching step, for each load profile in D,

form a sorting matrix X as follows: 2,
a
m 1 &) cee INy . 2 0 4 8 12 16 20 24

. . = 6 Load profile 1
N 2 -
Xm (2, n;)eak) —_— peak o 4 Load profile 2
. rpp . 3, > }- . -
— J 0 4 8~ 12 16 "~ar 207" 24
Xn (2’ ni'alley) = "valley ‘ﬁm% fhour] _ __,;:.'a -l i
7 =6 Sorted load profile 1 s '
n]. n’ =, . Sorted load profile27 1|
Pm = z :( peak miley)' 1) §2_ - e F — ]
J=1 12 16 20 24 28 32 ueN\ 40 44 48
9,730 Indices : N6 '
. . el e 2
Note that a load profile with a larger similarity index tends >!
. pp.Jj pp.j . \J
to have a higher load at ¢, ;; or a lower load t;,;. \ ” o
valley peak
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NC STATE UNIVERSITY ~ LPS-Step 5: Tolerance of the Matching Error ~ FREEDM Center

GridWrx Lab

* Define the tolerance of the matching error

Nt =
Pee er tn _Pee er tn
€=Z fd() fd(). (22)

Pfeeder(tn)

=1

In the recursive process, after a load profile is selected, e should decrease. Thus, if a selected
load profile causes e to increase, the load profile will be unselected and will be taken out of D.

10/18/2022 Wang, Jiyu, Xianggi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time- 27
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GridWrx Lab

Load Profile

« To consider different load types, D can be Commercial database

divided into different load groups: residential Load
load profiles and commercial load profiles.
 Then, instead of selecting load profiles from
D, load profiles can be selected from different ) .
load groups. Residential
Load
70%
Nt % /
Yot Prr(ty)
= < Rrr, (23)
Nt
Zt:l Pfeeder(tn)
Prr = Prr + P, (24) *
Nr § Residential Commercial
1 Prr(t
%‘T—l t) Rir * (14¢). (25) Load Load
Z =1 P feeder(fn) \ 70% 30%
error margin
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e for weekly matching: select 4-5 pairs of pivot points (i.e., 5000 ' ! ' :
the peak/valley load of 4/5 days); gmoo
o for monthly matching: select 16-24 pairs of pivot points 5 3000
3 2000

(i.e., the peak/valley loads of 4/5 days in each week); —— Actual feeder head load profile
« for yearly matching, select 36 pairs of pivot points (i.e., 1000 1 . : _Afgreg‘“ed ;"’"'e fr°m6FLDA'LPST
the peak/valley load of 3 weeks in each month).

ZTD P fw'der(t)_i’_ ﬁ?r'dpr([)
t=1 Preeder(t)
ME = , (26)
Tp
NE — Mk'eder - N, feeder 27) Day
N b
feeder WEEKLY MATCHING RESULTS
Tp }“)
¢
LCE = %r: ]__ Lr(®) — Rrrl|. (28) Number of Pivot-Pairs
D
Zr:l P feeder () 1 2 3 4 S 6 7
ME (%) 1.70 1.43 1.42 1.21 1.16 | 1.64 | 3.00
NE (%) 4.97 2.54 2.55 1.40 | 0.31 2.05 | 3.65
LCE (%) 0.59 0.51 0.66 0.56 | 0.53 ] 0.69 | 0.71
Run-time (s) 9.2 9.0 9.2 9.4 9.3 9.6 9.5
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Part 2-1: GAN-based Methods

1. Synthetic Data Generation
2. Synthetic Topology Generation
3. Super Resolution: from Low-Resolution to High Resolution
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Part 2-1: GAN-based Methods

1. Synthetic Data Generation

Yi Hu Yiyan Li

Yi Hu, Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew
Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based
Synthetic Load Group Generation Method Considering Spatial-Temporal
Correlations," submitted to IEEE Transactions on Smart Grid (2022).
Available online at: https://arxiv.org/abs/2210.01167
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GridWrx Lab

Goal: Generate a group of diversified load profiles using smart meter data.

Transmission

?E ;.LE :IE) Network
Generate a group of load profiles for a E’j -
transformer, a feeder and an area o o ) Distribution
Distribution Feeders WM ! | | I | *. * * Networks

Power

v

Time olf the day (hour)

Step 1: Feeder Load Disaggregation to obtain diversified nodal loads

!

Power

Power

Power
Power

1 1

™ » ™

Time of the day (hour) Time of the day (hour) Time of the day (hour) Time of the day (hour)
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NC STATE UNIVERSITY  Motivation: State-of-the-art Crid Wi Lab

Step 1: Generate one load profile at a time Step 2: Run step 1 for many times to
obtain a database of load profiles

Noise A load profile

“"‘MWV\ ‘—»‘ SingleLoad-GAN '—»“M a J« M — Load profile
L) S il AT Database
F Step 3: Randomly sample N load
: ’ & profiles to form a group of loads
- . - - :

Drawbacks:
Cannot account for group-level characteristics

A group of load profiles

10/18/2022 YiHu, Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 33
Generation Method Considering Spatial-Temporal Correlations,” submitted to IEEE Transactions on Smart Grid (2022). Available online at: https://arxiv.org/abs/2210.01167



NC STATE UNIVERSITY  Preserve the Group-level Characteristics o CeTer

GridWrx Lab

Step 1: Generate one load profile at a time Step 2: Run step 1 for many times to obtain a Step 3: Randomly sample N
database of load profiles load profiles

Noise A load profile

it s —{ th—

Load profile
Database

Noise :

. Generate N load
L} MultiLoad-GAN profiles in one shot ’

10/18/2022 YiHu, Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 34
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Configuration of SingleLoad-GAN

R ID256 OD128 ID64 OD64
512%4 K5S2P20P1 K3 S3P0OP0
5 p—
Sy
D (7]
| o9l g 8 S 2 <
b —_— 1 —I —_— | O [— S 1 [Ty E— —| — — c||—
el 8 Bac =
- —— 7 - - m m C m - ¥ - —
Noise 8 Generated Load Profile
Size:100 ID512 OD256 IDI280OD64  1D64 OD1 Size:672*1
L K5 S2 P2 OP1 K5S2P20OP1 K7 S7P0OPO
ID100 OD2048 Generator
ID32 OD32 ID64 OD128 ID256 OD1
M o K3S3Po ~ K5S82P2  K4S1PO
e L = - E
Generated Load Profile ()
[b]
Size:672*1 7| o = (. T
c || > c = > - J
o |lXx Q& X Fake or Real
O|S O ©
- - _
Real Dataset Real Load Profile IDIOD32 ID320D64 D128 OD256
Size:672*1 K7 S7 PO K5 S2 P2 K5 S2 P2

Discriminator
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Configuration

of MultiLoad-GAN

FREEDM Center
GridWrx Lab

[a]
kit g3 g é a2 CNEl_ |
It — 8 IHIH e T A
o 3 Generated Load Profile
Size:100 |D512 OD256 IDI280D64 D64 OD1 Size:672*1
K5 S2 P2 OP1 K552 P2 OP1 K7 S7 PO OPO
1D100 0D2048 Generator
‘ 1D32 OD32 1D64 OD128 1D256 OD1
K353 PO (5 52 P2 K4 S1P0
ID640 OD320 1D160 OD80 Generated Image G?;EL'TLZ"_LM . -2 a2
——— 640*4*4 K5 S(2,1) P2 OP(1,0) K5 S2 P2 OP1 Size:4*672*8 szt (T & TS| ] ] —
— T | Si= siZ||= Fake or Real
| olg o ||@l g
8 |l DS N
‘ O 9' 3 § % CQI 3 E % g REESII;:??ZPIT"E ',5'71;37':,,02 Discriminator IiSSZPg IDK%BS%E%SS
'ﬂ W —E=z — 5 2z 0 e T — g il
m & gl Bme Q) LAY
o Generated Load Profilg
Noise O Group Size:672*8
Size:100 D100 1D640 OD640 1D320 OD160 1D80 OD4
0D10240 K(7,5) S(7,1) P(0,2) OP0 K5 S(2,1) P2 OP(1,0)K(3,5) S(3, 1) P(0,2)
D1024 Generator OPO
1) enerated Infg ID32 OD64 1D128 OD256
size:av672} K@35)SE.1)P02)  K(45)S(4.1)P(0.2)
3 2
SR E
.' é —_— E (Z\.J D —— — - —_—
' o |X o = Fake or Real
i N olg |0 @S
“ # - . | |
Y ID4 OD32 1D64 OD128 1D256 OD1
Real Dataset Real Load Profile K(45) S(7.1) P(0,2) K5S(2.1) P2 K4 S1PO

Group Size:672*8

1D256 OD128
K552 P2 OP1

1D64 OD64
K3S3POOPO

Profile-to-image encodlng
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2D-convolution layers
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NC STATE UNIVERSITY  Profile-to-image Mapping Ay

Profile-to-image Encoding: time-series plots to 4-channel ([r, g, b, t]) image

5 -
5 tlme‘
s* 1 -
s 2 Encode
= 3 Load
users
Temperature
a) Map one load profile to an image bar |
(a) Map P € Load (kW) [r, g, b] Temperature(°F) Vector [t]
0 [0,1,0] 0 [0]
(0,2) gl, bt
2 [0, 0, 1]
(2,4) bl, rT (0,120) tT
4 [1,0,0]
(4, 6) rd
[6, +0) [0, 0, 0] 120 [1]
(b) Map a group of loads to an image with N bars
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It’s hard to decide which one is more realistic by visual inspection.

bl AN | ol

0123456701234567012345€6 7
day day day
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GridWrx Lab
Statistical Evaluation Deep-learning based Specialized Classifier
Whether or not group-level correlations are preserved? Whether or not high-level hidden features are similar?
. Positive | || —> Yes
Level Indices samples m fJ‘M Deep-learning
L N N il . —
Peak load distribution I based classifier
Mean power cor\sumptlon Negative ' > —»m
distribution | Ml I
Load ramps distribution Samples | i,
Household -
Hourly energy consumption
o ID1 OD32 ID32 OD641D64 OD128 1D128 OD256 1D256 OD512
distribution K(3,3)S(3,1)P(0,]) K3S1P1 K3S1P1l K3S1P1 K3S1P1
Daily energy consumption . o
distribution Qa8 3
. L - — || ol — —_ . .
Peak load distribution J(“ L‘ S| (RS
Mean power consumption |1 Iﬂnﬁ _ o @ g
distribu-tioh : Loa%izre?g';ggow K1S1PO K(2,1)S(2,1)P0 K2S2P0 K2S2P0 K(4,1)S(4,1)P0
Transformer Load ramps distribution ID7560064  1D160D2
Level Hourly energy consumption Probability to be real
distribution 5 2 d =
Daily energy consumption ;E R IR I sl
distribution @ @
Probability to be fake

ID71680D512  ID5120D256 1D640D16
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Original

Utility-labelled Load e SIS

Groups

Training
JE USROS P P MultiLoad-GAN
. Augmented data generation process if confidence> 0.9_| Augmented high-
i »| confidence Positive
i Samples
: MultiLoad-GAN »| Generated load groups
; | Deep-learning | f confidence> 0.5 | Aygmented Positive —
: g Classifier d Samples raining
i .| Randomly sampling to Deep-learning
! "| form new load groups ) i Classifier
: if confidgnce< 0.5 [Aygmented Negativel
i Samples
Negative Sample | Generated
Database in North g Generator | Negative Samples
Carolina
Negative sample generation
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(o] e ]
e We train the Classifier and MultiLoad-GAN

Randomly sample N MLGAN with

|te ratlvely. profiles as a LG Opmican(t — 1)
. . - ) T
e Then, let the partially trained classifier and | Randomly sampled LG MLGAN Generated LG Negative
. : ILEand d ’ QMLGAN S |
MultiLoad-GAN generate augmented dataet Bie  — sefottion
training data to enrich the training data set. i =
. e Unlabeled LG dataset, Qi ﬂLGg
e This will improve the performance of both. qunlabeted
7

------- )| el er i Gl — o) | Manually Labeled LG

labeled
i dataset, ;¢

I
10 ; :
o ! Discriminator I | DLC Labeled LG data |
2 ! —— Generator ! [ D |
5 t
: i | } '
o
3 } - - -I Classifier with 8. (t) |<- -I Train Classifier |
S 04 1
2 Stage 1 i Stage 2 (ADA .
a0¢ i 2ge 2 (ADA) Select high
0 10000 20000 : 30000 40000 50000 confidence LG
(a) steps )
o 2
+
MLGAN with
Train MLGAN |— - .. -
| Omrcan(t)
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1. Percentage of True Dataset Indices Original ADA Boosted
0 0 POR 94.38%
POR = 2% « 100% LG MCL 0.9371
POR 19.69%
QFEEAN MCL 0.1913
2. Mean Confidence Level FID with Q¢ 0.5173
POR 99.06% 94.99%
1 < _ QMLGAN MCL 0.9899 0.9491
MCL = az Prrye (@) FID with Q¢ 0.01106 0.000055
i=1
. . . . 1 Real 1 Real
. | | 1OUTI — MT.aGAN — MT.aGAN
3. Confidence distribution
SLGAN SLGAN
T(C('QLG)) = T([Ptrue(l)i Ptrue (2), ) Ptrue (Q)]) té té
a a
4. Fréchet inception distance
_l T T _I T . T
0.0 0.5 1.0 0.0 0.5 1.0
Similarity = FID (1(Qy ), T(QMLGAN
y (t(Q6), T(QLg )) W/O ADA With ADA
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Part 2-1: GAN-based Methods

1. Synthetic Data Generation
2. Synthetic Topology Generation

Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder
Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, vol. 12, no. 2,
pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper
can be found in Youtube at: https://youtu.be/r8cmSDyx1J8

3. Super Resolution: from Low-Resolution to High Resolution

10/18/2022 Dr. Ning Lu North Caroline State University 43
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FREEDM Center
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NC STATE UNIVERSITY GAN-base Method 2: FeederGAN

Goal: generate “DeepFake” feeder topologies

Real Feeder Topologies
-~ D \ Generated Feeder Topologies
s - -
T /xz M A
=1X,..X,,] »ﬂ—t;—r«—y-—_‘—U-—J—dr

XKoo
—_ s o
) =)
\-'E—- 2o
aiiny [l bmi-me L -2

- G - IR,H,” o™

Fig.2.12 Generated feeders
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NC STATE UNIVERSITY Uniqueness 1. Topology = Graph Representations

Mask the geographical coordinates of real feeders and make it stretch as straight as possible.
Only keep the “length” of each device (e.g. cable or overhead line). Because only electrical distance
matters, which determined by length and conductor material.

H

Device-as-node: represent feeder as a directed graph, each device as a node, and edges just
show the direction from feeder head to load node. Other information like ‘length’, ‘conductor
material’ are represented as node attributes.

a b

: a : b . c == d == |_> C 2 R

Qo
(l!)

o

Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid,
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GridWrx Lab
[ swwstaton) Human
Yes— guidance
\J
o _lu—t 1.
i E Format real feeders i —— - N Quality
as graphs B39 ™| validation
v f L
Train GAN Recontruct feeders Write back to
) - ) - - based on graph theory OpenDSS
Fig.1 Topology representation: feeder using geographical coordinates (left)
and Fsing clectrical distancel(right) No + *

Generate
S5 ( )
Converged? Yes—p» synthetic graphs stop

R S I T NN G G,
1 2 5 4 5 5 &3
J— : G(z) AX
6
. “ . . Generator
Fig. 2 Distribution feeder topology representation: Bus-as-node and device-as- — >
edge (left) and[device-as-node (right) ——* ®
A, X
- —_— Discriminator
real/fake
real graph
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12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyx1J8



https://ieeexplore-ieee-org.prox.lib.ncsu.edu/document/9201035
https://youtu.be/r8cmSDyxIJ8
https://youtu.be/r8cmSDyxIJ8

NC STATE UNIVERSITY  Uniqueness 2: Data Augmentation FREEOW Center

GridWrx Lab

How to handle data scarcity?
Our data sources: 14 real feeders most with equipment/device (nodes in a graph) from 1500 to 2000.
- need more graphs to better learn the implicit topology and attributes information.

Our solution: sample subgraphs. Note that a subgraph of a chemical molecule may not be valid; but a subgraph
of distribution feeder just represents a small part that exists in the system.

3000

Sampling rules:
1.  Only sample large graph, with nodes more than 500; . 1 N
2.  Choose a start node only in level O or level 1; ~+ T_I_ ‘&ﬁ\ " r~.
3. Extract its downstream (all the way to loads) as the subgraph; 0f I | ,.|J]__ =1 hﬁ_{r :'H—ﬁ N
4.  Check whether #node is more than 100, if not resample; aal l_ \' |J, f J
5.  Check whether #node of subgraph is more than 50% of #node in the ™ \ /

original graph, if so resample; \\ ”

6. Repeat 50 times to get 50 subgraphs for each feeder. e * - -

1] mho 2000 3000 4000 5000 6000 7000

In total, we get 14+13*50=664 graphs to train our model.

Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid,
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyx1J8 47
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Table I A summary of the attributes

0: organic, T: topological, V': numerical, C: categorical A g / o 7
Name Definition Type | Source d o
Length The length of a device. N 0 B ;
Norm Normal condition conductor amps, an N 0 2 g 3 ¥ s :
Amps indicator for the conductor materials. % Aol
Distance | Distance from feeder head to the device. N T 2
Pseudo | The sum of the capacity of all downstream N T
Load customer side transformers. z
Level Start as Level 0 at the feeder head. C T “Ro
When encountered a bifurcation leading to pr——r
several children branches, level+1 if \ Phase B
“norm amps” or “phase” of the child is st
different from that of the parent. o Phase BC
Phase 1 of the 7 options: a, b, ¢, ab, ac, be, abe C 0 i \ ":'." %8, o AR P ; g:";'éb"
o0 ..-;’l ‘."..' a O  Loads
X - x LTCVREG
Numerical: Xnum € IRTHX‘I- do % }: o Switching Capacitor
e Continuous variable normalize to [-1, 1]. N
Categorical: Xeqr = [Xias X2qt] € R™¥(d14d2) %

* Discrete variable, one-hot representation.
e Phaseaas[1000000]

Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid,
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyx1J8 48
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NC STATE UNIVERSITY  Uniqueness 4: screening and feasibility check " b =i

GridWrx Lab
«  Post-process screening: comparing feeder S
topology statistics for realisticness
* Feasibility check: use power flow to check if it is - s '
solvable and has reasonable voltage profiles w=|/ 7 i
o e
1 ! Mode Collapse
+— .
*‘I Ii I|l m 1 I I ll .FT _ o T

Fig. 13. Topology mode collapse

™ Voltage (pu) o Feeder Voltage Profile
— [ T T T I T — -
Substation - [ 3K sutstation] rrere 1038 —Phassd
1 Fixed Capacitor 1008, —x::
i 103 103
. Substation L !l.lulllhn_:

1.02

N | .
bt U

L

I T
-

LA

£ 0§

Bus Voltage (pu)

H H
= 5

1.005 ] 2 4 6 [ 10 12 "
Distance from Substation {km)

Fig. 11. Valtage profiles of nodes on phase a, b, and ¢ (Nodes arranged
ascendingly according to their distance to the substation)

Flg 9. Generated feeders Fig. 10. Nodal voltage along the generated feeder

Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid,
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Performance Metrics: Connectivity (e.g., isolated nodes) and Phase Transitions (e.g., 3-
phase circuit can be transitioned to 2- and 1-phase, ab followed by a or b.

Table IV Empirical statistics
| Metrics Empirical Statistics

4 Level 4~7

=l Phase a ab abc ac b be c
distribution | 18%~ 1%~ |20% ~ [ 1%~ |18%~ | 1%~ |18%~
28% 3% 25% 3% | 28% | 3% | 28%

L Out-degree ? (1) % 03 04 25
Table II Definition of the Success and Perfect metrics distribution 20 f’” 25 ?N 18 f’” 5 ?N 1 ?N <1%
Success Perfect 40% 45% 26% 1% 3%
phase Sub“cqucm phase “uhscqucm length distribution normalized to max length
neighbor’s phase neighbor’s phase 10%
3-phases | 3-phases, abe abc, ab, ac, be, a, b, ¢ 8%
2-phases, ab ab, a b 6%
l—phasc ac ac, d, ¢ 4%
2-phases | 2-phases, bc be, b, ¢ 20,3
1-phase a a 0.0 0.2 0.4 0.6 0.8 1.0
1-phase | 1-phase b b normalized length
P P c B Fig. 14. Probability distribution function of the line segments

10/18/2022 M. Liang, Y. Meng, J. Wang, D. L. Lubkeman and N. Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, 50
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Part 2-1: GAN-based Methods

1. Synthetic Data Generation
2. Synthetic Topology Generation
3. Super Resolution: from Low-Resolution to High Resolution

10/18/2022 Dr. Ning Lu North Caroline State University 51
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Transmission Network

4 1-Minute data

. Not usually available .
Distribution Networks 8 [ vensfhundredsof mw |

. Larger load and PV variations <—| :

. End use consumptions of appliances Distribution Feeders

Mw-level Hybrid
Energy Systems
3-phase utility-scale

15-minute Smart Meter Data
o Average kWH, kVar, Voltage —I :.":.';':::::m,:":.d

Super resolution

I Hundreds of kW or tens of MW I

3-phase Commercial/Industrial Loads

o Sensitive information

Tens of kW-level
HOUI’ly 1-phase Residential Loads
. Temperature, irradiance

. Average kWH paily
N Peak hour
o DR events Monthly

. Utility billing information
. Peak day peak hour

v

Time

10/18/2022 Dr. Ning Lu North Caroline State University 52
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Real high-

for each step: resolution data

# generate fake examples ‘ ‘ ' Real load
sampling LR inputs: z profiles
generate fake HR G(z) || ‘ ]
... °
# train discriminator Fake'hlgh-
sampling real HR resolution data ()

predict prob for real and fake HR
calculate loss for D
update 0p using gradian descent

N L Discriminator
# train generator
calculate loss for G
update 6 using gradian descent Low- Rack-propagation
resolution
load profiles Generator
& weather

Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 53
3278-3289, July 2022, doi: 10.1109/TSG.2022.3158235. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s
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NC STATE UNIVERSITY ~ ProfileSR-GAN: Load Profile Super-resolution (SR}

Develop high-resolution PV and load profiles A GAN-based Super-resolution Method

* Measurements uploaded from smart meter are L E=mreess o fu ‘ ]
usually averaged to 15-min or 30-min low resolution =~ 9 g|§ _% I3 m
(LR) > NS : ‘ °|

e High-resolution (HR) load data is important in system s s
situational awareness (e.g. peak load, load ramp) M __: i

e We restore the high-frequency load dynamics from - Foe TR i g?;' § | § | s ‘ 4 om0 ||| 2| -3
the LR measurements using deep learning methods E”:_fjj @ | IR | =l e proo

o o N

From 15-minutes = Minute-by-minute=> intra-minute

8
—
<6
<
o 4
LRprofile  Blurred image HR profile 8
-2 wll
0 - - - -
30-min 15-min 5-min 1-min
Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 54
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Stage 1: Inspired by the image processing applications min Lg(Gy, (PHR), PHR) )
9(:' L] *

Loss function design and hyper-parameter tuning LG = Leont + M Ladvs F 32 Lsear (6)

5 x residual block

where L., is the content loss; L4, 1s the adversarial loss;

L 1 E' ¥ " Lfeq; is the feature-matching loss; A and A, are the weight
S|E 2 = . coefficie
5 =z 2 g 3 ' I
i E = _9-+"§fi : LR HRY (|2
o = .
Ly e 5N Ly = Y 5(Goo(P1F) ~ (™)
LR profile 8 Fake HR j=1
& weather data Generator network
Fake profile %i
v
HR o - F -
o iy | ge I
I =0 o
L. 3 WSS || | g ol , © o9 A “\“ 30
.iii 2 ﬁ &; .8 ) ® 0.2 R V. %
HR UL S & _ = 7| Probability i~ Wl .
(real m“ m] F'm Discriminator network H
— i R e S 10
1 LR HR |12 Ladv_g = — lOg(DgD (GQG (PLR))) "\NE:!(I’EE:;‘IJ { = Lo N
Leom = ﬁ ||G{?(; (P } —P "2
Generate the load profile that CAN NOT be Fig. 6. Hidden feature maps extracted by the convolutional layers of the

distinguished as ”fake" by the discriminator 9 make diseriminator network, Load data source: Pecan Street [11].

the generated high-resolution profile more realistic.

Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 55
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NC STATE UNIVERSITY  ProfileSR-GAN Framework e o

Stage 2: fine-tuning

Stage 1: Inspired by the image processing applications use power system domain expertise
Loss function design and hyper-parameter tuning 3
5 x residual block ' :L'
g|E 8 § A
i =) I, = I
[l |'| 2% = SN [H | S X
WA - E S : 2
T J O | c o —_
T — U m (=} i c,/
LR profile i LENER O Fake HR 3 “
& weather data Generator network 3 |
x ||
v “

b %
(fake) |k Al e 3 3
' S| E ol
= o 25 @ 091
_____ : 4 %’ < O _E E | i
' 2|5 2 S =T @ o0az ‘\l“ |
& = L& . | 1
HR | o a ) = Probability Wi |
( |) ||I s ||||H|‘ I|||I '!ll“' |
rea . i
wu |” IM Discriminator network ‘ J “ L '
L 1 ‘u |Ii
Polishing network
Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp. 56
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4 N & 4 4 Stage 2: fine-tuning
Y ; e use power system domain expertise

—~3 ~ t 3 % : —~3 Y " '.=
3 ' HIi3 B { |,‘ i 3 1 { ¥l b
= = ER = ! ]
SB[ -

1y “! P J‘L Lo sl %'

..JZL‘-&J.JUI |‘ J ) g.m-;"sl N _yi. \,,p' B S 1“ u—*--'.. l
(a) Before pohshmg (b) After polishing (¢) Ground truth

Fig. 7. An illustration of comparing the envelopes of the generated daily HR
profiles (before and after polishing) with that of the actual daily load profile.

5 x residual block

Lpol = Loml + Lswit (12)
Lot = Smax (PHR) Emax (PR H «— shapeoutline loss :
2 comparing the local peaks and 7
+ N ”Emax(_PHR) — Emax (—PF) ”2 (13)  valleys of the generated profile v

1 pHR HR !
Lyyir = NHfmax AP ‘ — Emax | AP |”2 +——— Ramps = switching loss LN

|
APHR — pHR (G, 4 1) — PHR (), focuses on comparing the |\u"\‘|‘ "’“ '
APHR — pHR (1 |y _ pHR ) (14)  change of load between two I

consecutive sampling intervals

Polishing network

Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp.

57
3278-3289, July 2022, doi: 10.1109/TSG.2022.3158235. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s
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Part 2-2: Automated forecasting methods

will be presented by Dr. Yiyan Li

10/18/2022 Dr. Ning Lu North Caroline State University 58



NC STATE UNIVERSITY  PARS: three Main Platforms st

%% 2. Situation Awareness

Real-time

Situation Requirement: Monitor the
Awareness current status, forecast the
‘(mn;?:;sm future, authenticate the data,
detect anomalies.

—{ osbwe |  Approach:

1. Meta-learning for

A 4

C“‘;:z:‘e”‘ N generalizable tool sets
(PARS-CBT) 2. TCN for capturing spatial and

temporal correlation

10/18/2022 Dr. Ning Lu North Caroline State University 59
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Traditional machine learning, single task

Example — image classification Our case — LF — 000

1
I =
. I g S
¥ .. o o
e . g
Task 1 : . Wt | Task 1 g 20007 . fi . ]
dog cat  dog I 5 oo~ Training set »Testing set
I (0] 50 100 150
1

Training set Testing set

Time steps

Meta-learning, cross-task

o [

4000

3000 | J\
Task 1 200 M -
0

1
|
|
|
(known) 1 (known)
|
: f 1
Task 2 6 - [ Task 2
(known) [ 2PRIEorange | : (known)
|
-~ ? |
Task 3 @76 E—, pu | Task 3
(new) bike car I (new)
|
|

Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu. "A meta-learning based distribution system load forecasting model selection framework." Applied Energy 294 (2021):
116991. Meta-learning based load forecasting tool: https://www.youtube.com/watch?v=hiUMghTXOLM
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* Using meta learning to identify the best-fit forecasting model

* The framework is highly automated and extendable

Offline training 1: Base-learning Layer

Imput task dataij=1.2....0 ) LF models U= 1.2..... [}

Data granularity

X7 ()

X

substation
microgrid
transformer /

Load level

L.‘ RMSE: Zif,, b [ -7 l—b For cach task, sebect the LF naodel with smallest RMSE I—

Offline training 2: Meta-learning Layer
Input task feabares

Mcta leamers (f,= L2 L) Recommended model Actual bestf model

o= g (F)

W =argmin £ (@ 07

r

T 13 . |

weather+economy

Online application exogenous factors

Mew sk features

Trained meta beamers (i, = 1.2.... [yb Recommended model LF pesuilts

Data source: Wilson Energy, Pecan Street

Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu. "A meta-learning based distribution system load forecasting model selection framework." Applied Energy 294 (2021):

116991. Meta-learning based load forecasting tool: https://www.youtube.com/watch?v=hiUMghTXOLM

Goal: Handle heterogeneous
forecasting tasks

Historical

data length
r10 year

Forecasting
time horizon
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NC STATE UNIVERSITY ~ Approach 1 : meta-learning based load forecasting o

* 677 tasks for training, 169 tasks (20%) for validation

Results : Averaged accuracy of LF models on different rankings
_ _ Ranking |1 [ 2|3 |a|[5]|6|7]8][09]10

1. Achieve 46% (now > 70%) accuracy to hit Clzscscizi::;i,on 26 11791139 696 | 296 | 39 | 3% | 39% | 206 | 3%

the best LF model among 10 candidates SER  |1.14]1.27|1.34]1.46]4.18|2.89]4.48[3.61|2.61[3.09

2. Achieve 76% (now S 90%) accuracy to Failurecount| 0 | O | 2 (10|10 |12 |12|17 |14 |11

recommend a model that among top-3

3. Forecasting accuracy improved: Comparison of averaged LF accuracy

Average | Average | Failure
MAPE: 0.188 - 0.143 SER MAPE | Count
Proposed meta-learnin
SER: 1.40 - 1.14 P : & 114 | 0143 | o
mechanism
Best-performed single LF model 1.40 0.188 0

62
Ref: Li, Yiyan, et al. "A meta-learning based distribution system load forecasting model selection framework." Applied Energy 294 (2021): 116991.
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1. Background

Data-driven model vs physics-based model

Physics-based model A TCN-based Hybrid Forecasting Framework Data-driven model
* Supported by NWP physical model * Learned from historical data
POA i poline ¢ parameters A
e Can catch the trend of Tronare | e — and correlation among
. . . iffuse 1l = Paco, Pdco, Video
weather (irradiance) change o] [ | P e neighbors
* Vdcmax, Idemax
. . . * Zenith, Azimuth, tracking = Mppt_low_high
* But fail to predict intra-hour pomeacta | adme * Can catch very short-term
. * Alpha_sc, beta_sc Mr.?dulﬂpr.r.'.kring
fluctuations | | | L= e fluctuations caused by cloud,
_data-driven spatial-temporal model but only works for a few

] et

hours ahead

Data source: Strata Solar

How to combine their advantages? o

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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2. Methodology
A hybrid PV forecasting framework

Trend forecasting (TF): hourly granularity

Input: NWP data TCN #1: NWP blending

RAP NDFD GFS NAM

100
2:00 |
. y

300

22:00 -

24:00
Cloud-event forecasting (CF): 5-min granularity

Input: PV site irradiance

J————»| irradiance Soling

= PDA direct
= POA diffuse

Module parameters

= Zenith, Azimuth, tracking
+ STC, PTC, A, N,

* hees Voes Iy Voo

+ O foo G

Detector site selection

spectrum

3
Effective
irradiance

Il

Module per string
String per inverter

Physical model to achieve irradiance-power conversion

Inverter parameters

* Ve Vi
* Pu, Py P
* GGG

* Py

T

+ MPPTy, MPPT,g

* Inverter_type

TCN #2: Spatial-temporal forecasting

X

Recon
A

y
OTN#E /\ ’V\
ciliation |

Approach 2: spatial-temporal PV forecasting

TF output:
hourly forecasts

Reconciled forecasts

=
0:00 24:00
CF output:
5-min forecasts

bk
LIV

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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NC STATE UNIVERSITY  Approach 2: spatial-temporal PV forecasting

2. Methodology

Key Algorithm 1: Temporal Convolutional Network

Application 1: NWP blending

Output layer

v

¢ Blend different NWP data sources to

d=4 improve the NWP performance

| Hidden layer

d=2
Application 2: Spatial-temporal forecasting
‘[ Hidden layer

v

* Learn the spatial-temporal correlations
d=1

among neighbors

. . . . . Application 3: forecasting reconciliation
e Dilated convolution: longer receptive field with L .

¢ Reconcile the forecasts from physics-

\ 4

limited complexity

. . based model and data-driven model
e Causal structure: good fit for forecasting

65

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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NC STATE UNIVERSITY  Approach 2: spatial-temporal PV forecasting

2. Methodology

Key Algorithm 2: neighbor selection to identify most contributive neighbors
Definition of successful detection rate of a detector site for a given target site

e Extract cloud events from historical data

* For each day, find the time shift At,,, that has the maximum correlation coefficient S, between target and detector

» Define successful detection when 0 < At,,, < Ty, (leading correlation), and successful detection rate ¢

1.0F
Detector irradiance . . .
—— Target irradiance (@) Different correlation scenarios
05t
] Scenario Det'ector Target At Definition
S ook No. sites site
ﬁ 0.0F 1 Sunny Sunny \ Ignored
= V W (b) 2 Cloudy Sunny \ detect
B -0.5F 3 Sunny Cloudy \ Fails to detect
% 1.0 b Detectorcloud event 4 Cloudy Cloudy At <0 Fails to detect
E 0.0F = I 5 Cloudyv Cloudv 0<At _<T. Succes: i
[=] : \l | \ \i
2 J i ll | (© 6 Cloudy Cloudy Tinre <At Irrelevant
_0_5 = B
—— Target cloud event it
Maximum correlation time shift with detector
=1.0k 4 n L L 1 i N
08:00 10:00 1200 (b)  14:00 16:00 18:00 Zj—l I 5
. = =
Time Q= X 100%

PN
Example of correlation calculation J=175j€[2,6]

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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2. Methodology

Key Algorithm 2: neighbor selection to identify most contributive neighbors
Greedy-based optimal detector network searching

* Select optimal detector network that can maximize ¢

* Isan NP-hard problem, solved by greedy-search algorithm
Example of detector selection results

Detector network selection algorithm P = 0.56 Lenoir Lenoir
0.54
1. Calculate the time-lagged correlation value and At,_, 0.50 5 93\’ e
between the target site and each detector site. Q 9;0
. . . 0.46
2. Add the detector with the highest correlation value to the @ 99
detector network, and remove it from candidates g 0.42
Calculate ¢. If @ increases, then go back to 2. Else go to 4 g : Marshville 3;::;::‘:Eishbm Marshville
4, Delete 1 site from the selected detector network, and o 0.63 | fnored neghoer
calculate ¢. If @ increases, repeat this process. Else go back 0.58 i 09 9
to2 053 | || 15_‘5*)‘“/9 Q
5. If the detector network stabilized, we can obtain the near- IV . X
. 0.48 | Nwax =
optimal detector network 0 20 0 60 50
Number of neighbors Optimal detection network

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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2. Methodology

Key Algorithm 3: forecasting results reconciliation

e Set TCN working in Seg2seq mode to reconcile forecasts from physics-based model and data-driven model

e Can remove the inconsistency and improve forecasting performance

TF hourly forecasts

\’V\‘
|'I: \
</ ‘\ |
i J I
0:00 "
| /./ v
— AN / Reconciled forecasts
/
— | . | Sum
| TCN up
100 | Ioput Reconciliation | Output —
| (seq2seq) o !/
— / \ N —/ L
= ﬁ
I R [
F
CF 5-min forecasts = IF forecasts 1 Reconciled TF forecasts
l 0 CF forecasts Reconciled CF forecasts

Mg

Forecasting reconciliation framework

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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3. Case study _ Physics based model

e Can provide “trend” forecasts with hourly granularity
* Forecasting performance can be improved after blending different NWPs by TCN

* Unable to catch intra-hour fluctuations due to the NWP data granularity limitation

FEATURES OF DIFFERENT NWP DATA SOURCES AND THEIR FORECASTING

. . PERFORMANCE
Example of physics-based model forecasting results
=~ 500 HRRR GFS NAM | NDFD RAP
= i Real Spatial resolution 3km |28-44km| 12km | 2.5km | 13km
= 400 4 r‘. A Dara granularity 1h 3h 1-3h 1h 1h
4 Forecasts ! //\ Forecasting horizon 15h 16days | 4days 36h lday
£=L 300 4 \ [ \ Forecasting bias 23.74 6.89 14,99 1.31 16.11
] | Al _ [ [ | \ Forecasting RMSE | 76.14 | 8237 | 8030 | 61.72 | 6881
o 200 .' | ' |' |
| . | | ! ||,|'| | | |
¢ 1004 | | " | | . i TR e B T
2 | | | ) | | PERFORMANCE COMPARISON OF DIFFERENCE BLENDING METHODS
(=] | \ ! |
f [ /
a 01— . Jll . / . . ’ . ! . — Blending methods Forecasting RMSE | Forecasting bias
Oct.1 Oct.2 Oct.3 Oct.4 Oct.5 Oct.b Oct.7 LR 52.39 -9.81
Ti RF 50.57 -13.79
ime SVR 50.96 4.97
MLP 54.42 -2.33
LSTM 48.01 1.52
TCN 43.17 0.47

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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Approach 2: spatial-temporal PV forecasting

3. Case study _ data-driven model (1h ahead)

* Tested on 95 PV sites in NC state for 1h ahead forecasting
* 4 neighbor selection strategies are compared
e 4 deep-learning based spatial-temporal forecasting methods are tested

e TCN with selected neighbors yields the best performance

Example of physics-based model forecasting results STATISTICS OF THE 1-HOUR AHEAD FORECASTING RMSE ON 95 PV SITES

TCN VGG-8 . Evaluation CNN-
80 CNNLSTM GARNN Scenarios Metrics TCN LSTM VGG-8 GARNN| Average
70 Selected Media | 27.53 | 29.11 | 29.50 | 27.60 | 28.44
s 60 - . neighbors IQR 478 | 5.65 | 477 | 84l 5.90
2 . il Sinele site Media | 33.41 | 38.29 | 37.95 | 33.98 | 3591
& 50 i=. ,l & IQR 3.92 | 6.84 | 9.08 | 7.22 6.77
04 | | N . ] I A | | All sites Media | 40.18 | 43.02 | 40.01 | 29.20 | 38.10
. /'-\.-‘- b 1y PVVd IQR | 11.77 | 10.55 | 856 | 10.59 | 1037
J/ ' . ! ' Random Media | 34.05 | 37.88 | 37.91 | 31.96 | 3545
209 : - : neighbors IQR 511 | 672 | 593 | 921 6.74
Selected Singl All Random
neighbor ingle neighbor neighbor

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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3. Case study _ data-driven model (varying forecasting horizon)

* Further tested for different forecasting horizons: 5min — 6h

e TCN with selected neighbors has best performance and computation efficiency

Forecasting results under different forecasting horizon

TCN CMNN - LSTM VGG-B GARNN
% % / £ /./ FORECASTING PERFORMANCE EVALUATION (AVERAGED ON 95 SITES)
= - -~
2 40 _— I Evaluation CNN-
= =" o . g
3 Scenarios Metrics TCN LSTM VGG-8 | GARNN
o > Selected RMSE 3980 | 5188 | 4852 | 43.81
3 / _= /,// neighbors CI-90% 10.37 | 1581 | 1625 | 10.89
T = | Sinele si RMSE 5286 | 5580 | 6177 | 56.71
gl ste CI-90% 11.67 | 18.00 | 15.03 | 12.66

RMSE 49.92 57.74 54.30 42.15

80

= All sites CI-90% 17.84 | 2333 | 2569 | 14.52

Y S — Random RMSE 54.60 52.26 58.11 49.77
neighbors CI-90% 13.96 16.07 15.22 11.33

/ = / Average computation time = 6min | ~22min | = 31min |~ 164min

40

All

AL

80

a0 = b —r P

|

30min  2h 4h 6h 30min  2h 4h 6h 30min  2h 4h 6h 30min  2Zh 4h 6h
Forecasting horizon /il

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).
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3. Case study _ forecasting results reconciliation

* Reconciling forecasts from the two models can correct trend errors, especially after 2 hours.
AVERAGE FORECASTING RMSE BEFORE AND AFTER RECONCILIATION
Forecasting horizon | Smin | 30min zh 4h 6h |Average Error distribution on different forecasting horizons
Before reconciliation | 27.60 | 30.55 | 35.07 | 52.13 | 79.64 | 45.00 s
g e —— L
After reconciliation | 28.30 | 30.68 | 32.71 | 36.84 | 38.07 | 33.22 e e
Improvement -2.54% | -0.43% | 6.73% |29.33%|52.20%|25.95% TF forecasting baseline
Examples of forecasting results before and after
500 _rgcgpc;lj,ation
e =
g - (:\'\JI; 0 T T T
i NNV 30min 2h 4h 6h
°s 1 & 3 & 560 1 2 3 4 560 I 3 3 & Fe0 I 3 3 4 3 @ Forecasting horizon
Forecasting horizon (h)

Reference: Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).



NC STATE UNIVERSITY FREEDM Center

GridWrx Lab

Part 3: Reinforcement Learning based
Volt/var Control

10/18/2022 Dr. Ning Lu North Caroline State University



NC STATE UNIVERSITY ~ 2-Stage Learning Process s

Stage-1: Individual training - learn to react to voltage drops properly
Stage-2 Cooperation among — learn to share the response with the other PV controllers

OSI:' (2) JO 350
: 1, (11) ‘ .
- 1,i o
Agent j
v Agent i
Stage-1 a
Individual Training

Stage-2
L
»| Cooperative Training b RGeS
Solved by DDPG gt ]
Fy (14} “'.6-;1!‘-;-“
r;;(12)
Oy2,i(2)
Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, “Reinforcement Learning for Volt-Var Control: A Novel Two-stage Progressive Training 74

Strategy,” Proceeding of the 2022 PES General meeting, Denver, USA, 2022
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* Reward allocation
* Goal: decide action magnitude for cooperation

Reward need to be shared
e . O — 1 - re v af . - B0 — ) f ¥ - ¥ - C -
properly among agents to know  7'g ; I= CF; x ry — Cost; a2 = !szgn‘(u-sl__;) X Il(l(tsl,;,l - U-th.) X as, i,
who will take more/less actions /
t
AS 1 M ; L I(J:"
Score® = — E S T T SN 0. ™}
: A : Sps i C t s1,i (2) [
M —1 Z_):l | l)yl - ri (11)
St Agent j
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Vi(p.u) st * S" i -\gentf
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Part 3: Conclusion

10/18/2022 Dr. Ning Lu North Caroline State University 77



NC STATE UNIVERSITY  Conclusions FREEDM Center

GridWrx Lab

» High-fidelity Digital Twins are important for developing new grid support functions

— Benefits: compared with field tests, testing on digital twins are safer, cheaper, faster, and scalable

— Challenges: Data requirements are high (require realistic network topologies; require PV and load
data sets for populating the network models; require manufacture data sheets; require field tests for
benchmarking the model dynamic responses; ....)

 Challenges for Developing Machine Learning Applications:
— High-fidelity
» Data scarcity - are the result representative?
» Visual inspections is not sufficient to tell fake/real - How to evaluate realisticness?
— Trustworthy applications

» Explainable, repeatable, and replicable (especially if we need to take actions)
* Human-machine interface (when, how often, and who)
» Eliminate bias in data sets (e.g., data availability is geographically, demographically uneven)
* Cyber security considerations
— Open sources to accelerate the development

10/18/2022 Dr. Ning Lu (FET) North Caroline State University 78
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