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• Our Path Towards Developing Machine Learning Applications
• An Overview of Power System Digital Twin-based Approach

– Configurations and design considerations of the PARS platform
– Uniqueness of the digital-twin based approach

• Machine Learning Applications in Digital-twin Development
– Synthetic Data and Scenarios generation
– Parameterization 
– Co-simulation 
– Automated forecasting methods 
– Control and energy management systems modeling
– Faster-than-real-time response option selection
– Anomaly detection: natural or man-made errors and cyber attacks

• Conclusions
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GridWrx Lab My focuses in each part

• Our Path Towards Developing Machine Learning Applications
• An Overview of Power System Digital Twin-based Approach

– Configurations and design considerations of the PARS platform
– What is the digital-twin based approach?

• Machine Learning Applications in Digital-twin Development
– Synthetic Data and Topology Generation (empirical and GAN-based Methods)
– Parameterization
– Co-simulation 
– Automated forecasting methods (Meta-learning, TCN)
– Control and energy management systems modeling (Reinforcement Learning)
– Faster-than-real-time response option selection
– Anomaly detection: natural or man-made errors and cyber attacks

• Conclusions
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1. A supervised machine 
learning approach to control
energy storage devices

2018 2019

4. FeederGAN: Synthetic Feeder 
Topology Generation via Deep 
Graph Adversarial Nets

2020 2021 2022

3. Time Series 
Classification for 
Locating Forced 
Oscillation Sources2. A Multi-Agent Shared 

Machine Learning 
Approach for Real-time 
Battery Operation Mode 
Prediction and Control

2017

7. ProfileSR-GAN: A GAN based Super-
Resolution Method for Generating 
High-Resolution Load Profiles

5. A meta-learning based 
distribution system load 
forecasting model selection 
framework

6. TCN-based Spatial-
Temporal PV Forecasting
Framework with 
Automated Detector 
Network Selection

8. GAN-based load profile 
generation method

7. A Two-stage 
Training Strategy for 
Reinforcement
Learning based Volt-
Var Control
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9. Other ongoing Activities:
• Parameterization
• Baseline Quantification
• Anomaly Detection
• Load Disaggregation
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An Overview of the Digital twin based 
co-simulation platform
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1. Configurations and design considerations  
2. What is a digital-twin based approach
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Develop a Photovoltaic (PV) Analysis and Response Support (PARS) platform as a power grid digital 
twin that provides real-time situational awareness and optimal response plan selection. 

Highly Scalable
High Fidelity

Grid-forming: 
µs-level EMT domain

Grid-following: 
Ms-level phasor domain

Power Management: 
Intra 5-min quasi-steady-state

Energy Management: 
5-Minute to 24-ahead

Visibility
Machine Learning
enhanced forecasting

Secure by Design

Response Options
Faster-than Real-time 

Realistic
Realistic network models 

Realistic PV and load profiles

10/18/2022
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1. PARS Real-time HIL 
simulation platform

Requirement: Modeling the 
operation of interconnected
physical systems in high-fidelity

Approaches:
1. Populate the model with 

synthetic data and 
topology

2. Develop automated
parameterization

2. Situation Awareness

Requirement: Monitor the 
current status, forecast the 
future, authenticate the data, 
detect anomalies.

Approach:
1. Meta-learning for 

generalizable tool sets
2. TCN for capturing spatial and 

temporal correlation

3. Faster-than-real-time Optimal Response Tool (External to the HIL)
Requirement: energy and power management and response options (from 24-hour ahead to intra-hour to real-time) 
Approaches: 1)  Optimization, and 2) Machine learning based (reinforcement learning for adaptability) 

10/18/2022
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Reference Modeling Considerations Synchronization Communication

[1] Electromagnetic transients + phasor model Yes N/A

[2] Electromagnetic transients + phasor model Yes N/A

[3] Phasor model Yes Wireless communication simulator

[4] Electromagnetic transients + hardware Asynchronous N/A

[5] Phasor model + hardware Asynchronous JSON-link over Ethernet

Digital Twin 
based Approach

[6-10]

Electromagnetic transients + phasor model + 
hardware + Parameter Updates
+ Communication Links
+ Forecast the Model Evolutions
+ Energy/Power Management Systems

Asynchronous

1. Modbus
2. File-shared over Ethernet
3. VPN connections required for 

implementation of multi-area 
networked digital twins

1. Plumier, Frédéric, et al. "Co-simulation of electromagnetic transients and phasor models: A relaxation approach." IEEE Transactions on Power Delivery 31.5 (2016): 2360-2369.
2. Palmintier, Bryan, et al. "Design of the HELICS highperformance transmission-distribution-communication-market co-simulation framework." Proc. 2017 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, Pittsburgh, PA.

2017.
3. Godfrey, Tim, et al. "Modeling smart grid applications with cosimulation.“ Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on. IEEE, 2010.
4. Godfrey, Tim, et al. "Modeling smart grid applications with cosimulation.“ Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on. IEEE, 2010.
5. Palmintier, Bryan, et al. "A power hardware-in-the-loop platform with remote distribution circuit cosimulation." IEEE Transactions on Industrial Electronics 62.4 (2015): 2236-2245.
6. F. Xie, H. Yu, Q. Long, W. Zeng and N. Lu, "Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications," in IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2396-2406, May 2020,

doi: 10.1109/TSG.2019.2953718.
7. F. Xie, C. McEntee, M. Zhang, B. Mather and N. Lu, "Development of an Encoding Method on a Co-Simulation Platform for Mitigating the Impact of Unreliable Communication," in IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2496-2507,

May 2021, doi: 10.1109/TSG.2020.3039949. Videos related with the paper: https://www.youtube.com/watch?v=SdibDKEpw60.
8. F. Xie et al., "Networked HIL Simulation System for Modeling Large-scale Power Systems," 2020 52nd North American Power Symposium (NAPS), 2021, pp. 1-6, doi: 10.1109/NAPS50074.2021.9449646.
9. Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, “A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources,” 22PESGM1399, submitted to 2022 PES General meeting.

Available online at: https://arxiv.org/pdf/2111.09464.pdf
10. Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, “Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations,” 22PESGM1449, submitted to 2022 IEEE PESGM. Available online at: https://arxiv.org/pdf/2111.10031.pdf
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1. Q. Long, H. Yu, F. Xie, N. Lu and D. Lubkeman, "Diesel Generator Model Parameterization for Microgrid Simulation Using Hybrid Box-Constrained Levenberg-Marquardt Algorithm," 
in IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2020.3026617.

2. F. Xie, H. Yu, Q. Long, W. Zeng and N. Lu, "Battery Model Parameterization Using Manufacturer Datasheet and Field Measurement for Real-Time HIL Applications," in IEEE 
Transactions on Smart Grid, vol. 11, no. 3, pp. 2396-2406, May 2020, doi: 10.1109/TSG.2019.2953718.

3. F. Xie, C. McEntee, M. Zhang, B. Mather and N. Lu, "Development of an Encoding Method on a Co-Simulation Platform for Mitigating the Impact of Unreliable Communication," in 
IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2496-2507, May 2021, doi: 10.1109/TSG.2020.3039949. Videos related with the paper: 
https://www.youtube.com/watch?v=SdibDKEpw60

4. F. Xie et al., "Networked HIL Simulation System for Modeling Large-scale Power Systems," 2020 52nd North American Power Symposium (NAPS), 2021, pp. 1-6, doi: 
10.1109/NAPS50074.2021.9449646. 

5. F. Xie, C. McEntee, M. Zhang and N. Lu, "An Asynchronous Real-time Co-simulation Platform for Modeling Interaction between Microgrids and Power Distribution Systems," Proc. of 
2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5, doi: 10.1109/PESGM40551.2019.8973802.

6. Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, “Novel Real-Time EMT-TS Modeling Architecture for Feeder Blackstart Simulations,” submitted to 2022 IEEE PESGM. 
https://arxiv.org/pdf/2111.10031.pdf

7. Victor Paduani, Lidong Song, Bei Xu, Dr. Ning Lu, "Maximum Power Reference Tracking Algorithm for Power Curtailment of Photovoltaic Systems", Proc. of IEEE PES 2021 General 
Meeting. 2021. arXiv preprint arXiv:2011.09555.

8. Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, “A Novel Grid-forming Voltage Control Strategy for Supplying Unbalanced Microgrid Loads Using Inverter-based Resources,” 
submitted to 2022 PES General meeting. https://arxiv.org/pdf/2111.09464.pdf

9. Long Qian, Hui Yu, Fuhong Xie, Wenti Zeng, Srdjan Lukic, Ning Lu, and David Lubkeman., "Microgrid Power Flow Control with Integrated Battery Management Functions," Proc. of 
2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281437.

10. Sun, Tiankui, Jian Lu, Zhimin Li, David Lubkeman, and Ning Lu. "Modeling Combined Heat and Power Systems for Microgrid Applications." IEEE Transactions on Smart Grid, Jan. 2017.
11. Nguyen, Quan, Jim Ogle, Xiaoyuan Fan, Xinda Ke, Mallikarjuna R. Vallem, Nader Samaan, and Ning Lu. "EMS and DMS Integration of the Coordinative Real-time Sub-Transmission 

Volt-Var Control Tool under High DER Penetration." arXiv preprint arXiv:2103.10511 (2021). 
12. Ke, Xinda, Nader Samaan, Jesse Holzer, Renke Huang, Bharat Vyakaranam, Mallikarjuna Vallem, Marcelo Elizondo et al. "Coordinative real-time sub-transmission volt–var control for 

reactive power regulation between transmission and distribution systems." IET Generation, Transmission & Distribution (2018).
13. Nader Samaan, Marcelo A. Elizondo, Bharat Vyakaranam, Mallikarjuna R. Vallem, Xinda Ke, Renke Huang, Jesse T. Holzer, Siddharth Sridhar, Quan Nguyen, Yuri V. Makarov, Xiangqi 

Zhu, Jiyu Wang, and Ning Lu, "Combined Transmission and Distribution Test System to Study High Penetration of Distributed Solar Generation," Proc. of IEEE/PES Transmission and 
Distribution Conference and Exposition, 2018.
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Big-Data in Digital-twin Development
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1. Synthetic Data and Topology Generation (GAN-based Methods)
2. Parameterization (Regression or Clustering)
3. Co-simulation 
4. Automated forecasting methods (Meta-learning, TCN)
5. Control and energy management systems modeling (Reinforcement Learning)
6. Faster-than-real-time response option selection
7. Anomaly detection: natural or man-made errors and cyber attacks
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GridWrx Lab Challenges in Data Acquisition

• Data are collected and stored in different places with different format and 
with different data qualities

– Across a few departments
– Dependent of applications

• Proprietary Information that are sensitive and it is difficult if not possible 
for utilities to share their data with the academia

– Privacy
– Security

• As a result, only a small amount of data are sharable
– Insufficient for testing and validating the developed methodologies
– Hard to transfer knowledge learnt from one case to another

10/18/2022 14
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GridWrx Lab Synthetic Data Generation

• Acquisition and sharing of actual data sets are extremely hard
– Proprietary, Privacy, Security 

• Generate realistic synthetic data for power system digital twins
– Topology and time series load and PV profiles
– Generate from actual data sets and network models
– A transparent  modeling process with customizable parameters
– Can cover a large amount of operation conditions and network topology variations

10/18/2022 15
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Part 1: Load Disaggregation Methods
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1. Feeder Load Disaggregation

2. HVAC Load Disaggregation
Hyeonjin Kim, Kai Ye, Han Pyo Lee, Rongxing Hu, Di Wu, PJ Rehm, and Ning LU, “An ICA-Based HVAC Load 
Disaggregation Method Using Smart Meter Data” submitted to 2023 ISGT. Available online at: 
https://arxiv.org/abs/2209.09165

Ming Liang, Jiyu Wang, Yao Meng, Ning LU, David Lubkeman, and Andrew Kling. "A Sequential Energy 
Disaggregation Method using Low-resolution Smart Meter Data, " Proc. of IEEE Innovative Smart Grid 
Technologies, Washington DC, 2019.

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A 
Data-Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method." IEEE Transactions on 
Smart Grid 11, no. 6 (2020): 5396-5406.

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F2209.09165&sa=D&sntz=1&usg=AOvVaw3I0jgd-kzobEFaJZY_s4Q-
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Time of the 
day (hour)

Power

Time of the 
day (hour)

Power

Time of the 
day (hour)

In the past – No diversity
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Power

Time of the day (hour)

…

Feeder Head Load Profile

decompose

In the past: 
• Feeder head data is 

recorded at the substation
• Sub-nodes load profiles are 

not measured
• Use the same load profile 

for all sub-nodes 
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Power

Time of the day (hour)

Power

Time of the 
day (hour)

Power

Time of the 
day (hour)

Power

Time of the 
day (hour)

… …

Known Feeder Head Load Profile

Nodal Load Profile

Disaggregate

In the past: using the same load 
profile for all sub-nodes 

Now: Diversified load profiles 
generated by smart meter data. 

Power

Time of the 
day (hour)
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Time of the day (hour)

… …

From the Known feeder-head load profile

Step 1: Feeder Load Disaggregation to obtain diversified nodal loads

Goal: Generate diversified load 
profiles using  smart meter data. 

Po
w

er

Time of the day (hour)
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Step 2: Building Load Disaggregation to obtain the HVAC, PV, and charging loads
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FREEDM Center 
GridWrx Lab Feeder Load Disaggregation Algorithm (FLDA)

FLDA-LPS: Load profile selection
– Randomly select load profiles
– Select pivot-point
– Select reference load profiles

10/18/2022 20

FLDA-LPA: Load profile allocation
– Distribution transformer rating
– Load type
– Square footage

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.
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FLDA-LPS: Load profile selection
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FLDA-LPA: Load profile allocation

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.

Load profile Database

50kVA 75kVA 100kVA
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FLDA-LPS: Load profile selection
– Randomly select load profiles
– Select pivot-point
– Select reference load profiles

10/18/2022 22Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.

Load profile Database
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GridWrx Lab LPS-Step 1: Pivot point selection

• Critical points that can capture the key load 
characteristic of a load curve

• One day: a pivot pair (peak&valley)
• Monthly profile: may need multiple pivot 

pairs

10/18/2022 23Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.
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Radom load ratio:     𝑅𝑅random

4302 sets of smart 
meter data with 30-
minute data points

𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

Smart Meter Database
𝑫𝑫

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.

Randomly select load 
profiles and put them 

into 𝑫𝑫𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

nodes
1 2 n
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Way 1 Way 2

0 1 2 3 4 5 6 7
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Actual feeder head load profile

Aggregated load profile of selected houses

Target profile after random selection

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓 = 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.
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At each matching step, for each load profile in 𝐷𝐷, 
form a sorting matrix 𝑋𝑋 as follows:

10/18/2022 26

Note that a load profile with a larger similarity index tends 
to have a higher load at 𝑡𝑡𝑝𝑝𝑓𝑓𝑡𝑡𝑝𝑝

𝑝𝑝𝑝𝑝,𝑗𝑗 or a lower load 𝑡𝑡𝑙𝑙𝑟𝑟𝑡𝑡𝑓𝑓
𝑝𝑝𝑝𝑝,𝑗𝑗 .

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.
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In the recursive process, after a load profile is selected, 𝑒𝑒 should decrease. Thus, if a selected 
load profile causes e to increase, the load profile will be unselected and will be taken out of 𝐷𝐷.

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.
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• To consider different load types, 𝐷𝐷 can be 
divided into different load groups: residential 
load profiles and commercial load profiles.

• Then, instead of selecting load profiles from 
𝐷𝐷, load profiles can be selected from different 
load groups.
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Load Profile 
databaseCommercial

Load

Residential
Load

Commercial 
Load
30%

Residential 
Load
70%

70%

error margin

Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-Driven Pivot-Point-Based Time-
Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.
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Series Feeder Load Disaggregation Method." IEEE Transactions on Smart Grid 11, no. 6 (2020): 5396-5406.
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1. Synthetic Data Generation
2. Synthetic Topology Generation
3. Super Resolution: from Low-Resolution to High Resolution
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Yi Hu Yiyan Li

1. Synthetic Data Generation

Yi Hu,  Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew 
Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based 
Synthetic Load Group Generation Method Considering Spatial-Temporal 
Correlations," submitted to IEEE Transactions on Smart Grid (2022). 
Available online at: https://arxiv.org/abs/2210.01167
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Time of the day (hour)

… …

Generate a group of load profiles for a 
transformer, a feeder and an area

Step 1: Feeder Load Disaggregation to obtain diversified nodal loads

Goal: Generate a group of diversified load profiles using  smart meter data. 

Po
w

er

Time of the day (hour)
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SingleLoad-GAN

Noise

A group of load profiles

Yi Hu,  Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 
Generation Method Considering Spatial-Temporal Correlations," submitted to IEEE Transactions on Smart Grid (2022). Available online at: https://arxiv.org/abs/2210.01167

A load profile

Load profile 
Database

Step 3: Randomly sample 𝑵𝑵 load 
profiles to form a group of loads

Step 1: Generate one load profile at a time Step 2: Run step 1 for many times to 
obtain a database of load profiles

Drawbacks: 
Cannot account for group-level characteristics
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SingleLoad-GAN

Noise

Yi Hu,  Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 
Generation Method Considering Spatial-Temporal Correlations," submitted to IEEE Transactions on Smart Grid (2022). Available online at: https://arxiv.org/abs/2210.01167

A load profile

Load profile 
Database

Step 3: Randomly sample 𝑵𝑵
load profiles

MultiLoad-GAN

Noise
Generate 𝑵𝑵 load 
profiles in one shot

Step 1: Generate one load profile at a time Step 2: Run step 1 for many times to obtain a 
database of load profiles
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Profile-to-image encoding 2D-convolution layers
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Load (kW) [r, g, b] Temperature(℉) Vector [t]

0 [0, 1, 0] 0 [0]

(0, 2) g↓, b↑

(0,120) t↑

2 [0, 0, 1]

(2, 4) b↓, r↑

4 [1, 0, 0]

(4, 6) r↓

[6, +∞) [0, 0, 0] 120 [1]

Encode
Load

Temperature

1
2
3
…
N

time

users

(b) Map a group of loads to an image with N bars

…

…

(a) Map one load profile to an image bar 

Profile-to-image Encoding: time-series plots to 4-channel ([r, g, b, t]) image

Yi Hu,  Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 
Generation Method Considering Spatial-Temporal Correlations," submitted to IEEE Transactions on Smart Grid (2022). Available online at: https://arxiv.org/abs/2210.01167
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It’s hard to decide which one is more realistic by visual inspection.

Yi Hu,  Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 
Generation Method Considering Spatial-Temporal Correlations," submitted to IEEE Transactions on Smart Grid (2022). Available online at: https://arxiv.org/abs/2210.01167
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Utility-labelled Load 
Groups

Data Scarcity: A Novel Augmentation Process
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• We train the Classifier and MultiLoad-GAN 
iteratively. 

• Then, let the partially trained classifier and 
MultiLoad-GAN generate augmented 
training data to enrich the training data set.  

• This will improve the performance of both.

𝛀𝛀𝐿𝐿𝑟𝑟𝑡𝑡𝑓𝑓

Randomly sample N 
profiles as a LG

Randomly sampled LG 
dataset, 𝛀𝛀𝐿𝐿𝐿𝐿

𝑅𝑅𝑡𝑡𝑟𝑟𝑓𝑓
MLGAN Generated LG 
dataset, 𝛀𝛀𝐿𝐿𝐿𝐿

𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀

Unlabeled LG dataset, 
𝛀𝛀𝐿𝐿𝐿𝐿
𝑢𝑢𝑟𝑟𝑙𝑙𝑡𝑡𝑢𝑢𝑓𝑓𝑙𝑙𝑓𝑓𝑓𝑓

Classifier with 𝜽𝜽𝐶𝐶(𝑡𝑡 − 1)

+

DLC Labeled LG data

𝛀𝛀𝐿𝐿𝐿𝐿 𝛀𝛀𝐿𝐿𝐿𝐿
𝑀𝑀𝑓𝑓𝑁𝑁

Manually Labeled LG 
dataset, 𝛀𝛀𝐿𝐿𝐿𝐿
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Negative 
Sample 
Selection

+

Train ClassifierClassifier with 𝜽𝜽𝐶𝐶(𝑡𝑡)

MLGAN with 
𝜽𝜽𝑀𝑀𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀(𝑡𝑡 − 1)

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒

Select high 
confidence LG
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Yi Hu,  Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 
Generation Method Considering Spatial-Temporal Correlations," submitted to IEEE Transactions on Smart Grid (2022). Available online at: https://arxiv.org/abs/2210.01167
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W/O ADA With ADA

Dataset Indices Original ADA Boosted

𝛀𝛀𝐋𝐋𝐋𝐋
POR 94.38%
MCL 0.9371

𝛀𝛀𝐋𝐋𝐋𝐋
𝐒𝐒𝑳𝑳𝐋𝐋𝐆𝐆𝐆𝐆

POR 19.69%
MCL 0.1913

FID with 𝛀𝛀𝐋𝐋𝐋𝐋 0.5173

𝛀𝛀𝐋𝐋𝐋𝐋
𝐌𝐌𝑳𝑳𝐋𝐋𝐆𝐆𝐆𝐆

POR 99.06% 94.99%
MCL 0.9899 0.9491

FID with 𝛀𝛀𝐋𝐋𝐋𝐋 0.01106 0.000055

Yi Hu,  Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Matthew Makdad, Edmond Miller, and Ning Lu, "MultiLoad-GAN: A GAN-Based Synthetic Load Group 
Generation Method Considering Spatial-Temporal Correlations," submitted to IEEE Transactions on Smart Grid (2022). Available online at: https://arxiv.org/abs/2210.01167
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3. Confidence distribution

4. Fréchet inception distance 

𝜏𝜏 𝑀𝑀 𝜴𝜴𝐿𝐿𝐿𝐿 = 𝜏𝜏 𝑃𝑃𝑡𝑡𝑓𝑓𝑢𝑢𝑓𝑓 1 ,𝑃𝑃𝑡𝑡𝑓𝑓𝑢𝑢𝑓𝑓 2 , … ,𝑃𝑃𝑡𝑡𝑓𝑓𝑢𝑢𝑓𝑓 𝑄𝑄
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1. Synthetic Data Generation
2. Synthetic Topology Generation

3. Super Resolution: from Low-Resolution to High Resolution

Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder 
Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, vol. 12, no. 2, 
pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper 
can be found in Youtube at: https://youtu.be/r8cmSDyxIJ8

https://ieeexplore-ieee-org.prox.lib.ncsu.edu/document/9201035
https://youtu.be/r8cmSDyxIJ8
https://youtu.be/r8cmSDyxIJ8
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Real Feeder Topologies

Goal: generate “DeepFake” feeder topologies

Generated Feeder Topologies

Generator

Discriminator
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Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, 
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyxIJ8

https://ieeexplore-ieee-org.prox.lib.ncsu.edu/document/9201035
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Mask the geographical coordinates of real feeders and make it stretch as straight as possible. 
Only keep the “length” of each device (e.g. cable or overhead line). Because only electrical distance
matters, which determined by length and conductor material.

Device-as-node: represent feeder as a directed graph, each device as a node, and edges just 
show the direction from feeder head to load node. Other information like ‘length’, ‘conductor 
material’ are represented as node attributes. 
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Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, 
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyxIJ8
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How to handle data scarcity?
Our data sources: 14 real feeders most with equipment/device (nodes in a graph) from 1500 to 2000.

 need more graphs to better learn the implicit topology and attributes information.

Our solution: sample subgraphs. Note that a subgraph of a chemical molecule may not be valid; but a subgraph 
of distribution feeder just represents a small part that exists in the system.

Sampling rules: 
1. Only sample large graph, with nodes more than 500;
2. Choose a start node only in level 0 or level 1;
3. Extract its downstream (all the way to loads) as the subgraph;
4. Check whether #node is more than 100, if not resample;
5. Check whether #node of subgraph is more than 50% of #node in the 

original graph, if so resample;
6. Repeat 50 times to get 50 subgraphs for each feeder.

In total, we get 14+13*50=664 graphs to train our model.
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Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, 
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyxIJ8

https://ieeexplore-ieee-org.prox.lib.ncsu.edu/document/9201035
https://youtu.be/r8cmSDyxIJ8
https://youtu.be/r8cmSDyxIJ8
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GridWrx Lab Uniqueness 3: Select Attributes
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Categorical:    𝐗𝐗𝒔𝒔𝒄𝒄𝒔𝒔 = 𝐗𝐗𝒔𝒔𝒄𝒄𝒔𝒔𝟏𝟏 ,𝐗𝐗𝒔𝒔𝒄𝒄𝒔𝒔𝟐𝟐 ∈ ℝ𝑟𝑟×(𝑓𝑓1+𝑓𝑓2)

• Discrete variable, one-hot representation.
• Phase 𝑆𝑆 as [1 0 0 0 0 0 0] 

Numerical:      𝐗𝐗𝒏𝒏𝒏𝒏𝒏𝒏 ∈ ℝ𝑟𝑟×4

• Continuous variable normalize to [-1, 1].
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Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, 
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyxIJ8

https://ieeexplore-ieee-org.prox.lib.ncsu.edu/document/9201035
https://youtu.be/r8cmSDyxIJ8
https://youtu.be/r8cmSDyxIJ8
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FREEDM Center 
GridWrx Lab Uniqueness 4: screening and feasibility check

• Post-process screening: comparing feeder 
topology statistics for realisticness

• Feasibility check: use power flow to check if it is 
solvable and has reasonable voltage profiles

Mode Collapse

FREEDM Center 
GridWrx Lab 

49
Ming Liang, Yao Meng, J. Wang, D. L. Lubkeman and Ning Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, 
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyxIJ8

https://ieeexplore-ieee-org.prox.lib.ncsu.edu/document/9201035
https://youtu.be/r8cmSDyxIJ8
https://youtu.be/r8cmSDyxIJ8
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FREEDM Center 
GridWrx Lab Uniqueness 5: Realisticness Check
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Performance Metrics: Connectivity (e.g., isolated nodes) and Phase Transitions (e.g., 3-
phase circuit can be transitioned to 2- and 1-phase,  𝑆𝑆𝑎𝑎 followed by 𝑆𝑆 or 𝑎𝑎. 

M. Liang, Y. Meng, J. Wang, D. L. Lubkeman and N. Lu, "FeederGAN: Synthetic Feeder Generation via Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, 
vol. 12, no. 2, pp. 1163-1173, March 2021, doi: 10.1109/TSG.2020.3025259. A brief introduction of the paper can be found in Youtube at: https://youtu.be/r8cmSDyxIJ8
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https://ieeexplore-ieee-org.prox.lib.ncsu.edu/document/9201035
https://youtu.be/r8cmSDyxIJ8
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Part 2-1: GAN-based Methods
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1. Synthetic Data Generation
2. Synthetic Topology Generation
3. Super Resolution: from Low-Resolution to High Resolution
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FREEDM Center 
GridWrx Lab GAN-based Method 1: Super Resolution
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15-minute Smart Meter Data
• Average kWH, kVar, Voltage
• Sensitive information

Daily
• Peak hour
• DR events Monthly

• Utility billing information
• Peak day peak hour

Time

Hourly
• Temperature, irradiance
• Average kWH

1-Minute data
• Not usually available 
• Larger load and PV variations
• End use consumptions of appliances

Super resolution

Dr. Ning Lu North Caroline State University        
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Generator

Discriminator

Real load 
profiles

Real high-
resolution data

Low-
resolution 

load profiles
& weather

Back-propagation

# training loop
for each step:

# generate fake examples
sampling LR inputs: z
generate fake HR G(z)

# train discriminator
sampling real HR
predict prob for real and fake HR
calculate loss for D
update 𝜃𝜃𝐷𝐷 using gradian descent

# train generator
calculate loss for G
update 𝜃𝜃𝐿𝐿 using gradian descent

GAN-based Framework

Fake high-
resolution data

53Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp.
3278-3289, July 2022, doi: 10.1109/TSG.2022.3158235. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s

https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s
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ProfileSR-GAN: Load Profile Super-resolution (SR)

Develop high-resolution PV and load profiles A GAN-based Super-resolution Method

• Measurements uploaded from smart meter are
usually averaged to 15-min or 30-min low resolution
(LR)

• High-resolution (HR) load data is important in system
situational awareness (e.g. peak load, load ramp)

• We restore the high-frequency load dynamics from
the LR measurements using deep learning methods

From 15-minutes Minute-by-minute intra-minute
SR

LR profile         Blurred image HR profile              HR image

54Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp.
3278-3289, July 2022, doi: 10.1109/TSG.2022.3158235. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s

https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s
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Stage 1: Inspired by the image processing applications

ProfileSR-GAN Framework

55

Loss function design and hyper-parameter tuning

Generate the load profile that CAN NOT be 
distinguished as “fake” by the discriminator make 
the generated high-resolution profile more realistic.

Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp.
3278-3289, July 2022, doi: 10.1109/TSG.2022.3158235. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s

https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s
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Stage 1: Inspired by the image processing applications
Stage 2: fine-tuning

ProfileSR-GAN Framework

56

Loss function design and hyper-parameter tuning
use power system domain expertise

Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp.
3278-3289, July 2022, doi: 10.1109/TSG.2022.3158235. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s

https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s
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Stage 2: fine-tuning

ProfileSR-GAN Framework

57

use power system domain expertise

shapeoutline loss

Ramps  switching loss

comparing the local peaks and 
valleys of the generated profile

focuses on comparing the 
change of load between two 
consecutive sampling intervals

Lidong Song, Yiyan Li and N. Lu, "ProfileSR-GAN: A GAN Based Super-Resolution Method for Generating High-Resolution Load Profiles," in IEEE Transactions on Smart Grid, vol. 13, no. 4, pp.
3278-3289, July 2022, doi: 10.1109/TSG.2022.3158235. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s

https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s
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Part 2-2: Automated forecasting methods

will be presented by Dr. Yiyan Li 
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1. PARS Real-time HIL 
simulation platform

Requirement: Modeling the 
operation of interconnected
physical systems in high-fidelity

Approaches:
1. Populate the model with 

synthetic data and topology
2. Develop automated

parameterization

2. Situation Awareness

Requirement: Monitor the 
current status, forecast the 
future, authenticate the data, 
detect anomalies.

Approach:
1. Meta-learning for 

generalizable tool sets
2. TCN for capturing spatial and 

temporal correlation

3. Faster-than-real-time Optimal Response Tool (External to the HIL)
Requirement: energy and power management and response options (from 24-hour ahead to intra-hour to real-time) 
Approaches: 1)  Optimization, and 2) Machine learning based (reinforcement learning for adaptability) 

10/18/2022

HIL: Hardware-in-the-loop

FREEDM Center 
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Dr. Ning Lu North Caroline State University        
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Example – image classification Our case – LF 
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Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu. "A meta-learning based distribution system load forecasting model selection framework." Applied Energy 294 (2021): 
116991. Meta-learning based load forecasting tool: https://www.youtube.com/watch?v=hiUMqhTXOLM

https://www.youtube.com/watch?v=hiUMqhTXOLM
https://www.youtube.com/watch?v=hiUMqhTXOLM
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Data source: Wilson Energy, Pecan Street

Goal: Handle heterogeneous
forecasting tasks

Data granularity

Historical 
data length

Forecasting 
time horizon

exogenous factors

Load level
15 min

1 h

1 day

1 month

1 week
1 month

1 year
10 year

1 h

1 day

1 week

1 year

none

temperature

weather+economy 

single user
transformer

microgrid
substation

weather

• Using meta learning to identify the best-fit forecasting model
• The framework is highly automated and extendable

FREEDM Center 
GridWrx Lab 

Li, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu. "A meta-learning based distribution system load forecasting model selection framework." Applied Energy 294 (2021): 
116991. Meta-learning based load forecasting tool: https://www.youtube.com/watch?v=hiUMqhTXOLM

Approach 1： meta-learning based load forecasting

https://www.youtube.com/watch?v=hiUMqhTXOLM
https://www.youtube.com/watch?v=hiUMqhTXOLM
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1. Achieve 46% (now > 70%) accuracy to hit

the best LF model among 10 candidates

2. Achieve 76% (now > 90%) accuracy to

recommend a model that among top-3

3. Forecasting accuracy improved:

MAPE: 0.188 → 0.143

SER: 1.40 → 1.14

Average 
SER

Average 
MAPE

Failure
Count

Proposed meta-learning 
mechanism 1.14 0.143 0

Best-performed single LF model 1.40 0.188 0

Ranking 1 2 3 4 5 6 7 8 9 10
Classification 

accuracy 46 17% 13% 6% 4% 3% 3% 3% 2% 3%

SER 1.14 1.27 1.34 1.46 4.18 2.89 4.48 3.61 2.61 3.09
Failure count 0 0 2 10 10 12 12 17 14 11

Comparison of averaged LF accuracy

Averaged accuracy of LF models on different rankingsResults :

• 677 tasks for training, 169 tasks (20%) for validation

62
Ref: Li, Yiyan, et al. "A meta-learning based distribution system load forecasting model selection framework." Applied Energy 294 (2021): 116991.

Approach 1： meta-learning based load forecasting
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Data-driven model vs physics-based model

63

A TCN-based Hybrid Forecasting Framework 

physical model 

data-driven spatial-temporal model

Data source: Strata Solar

Physics-based model Data-driven model

• Supported by NWP
• Can catch the trend of 

weather (irradiance) change
• But fail to predict intra-hour 

fluctuations

• Learned from historical data 
and correlation among 
neighbors

• Can catch very short-term 
fluctuations caused by cloud, 
but only works for a few 
hours ahead

Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

How to combine their advantages?

Approach 2: spatial-temporal PV forecasting

1. Background
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A hybrid PV forecasting framework

64

Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

2. Methodology

Approach 2: spatial-temporal PV forecasting
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Key Algorithm 1: Temporal Convolutional Network
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Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

• Dilated convolution: longer receptive field with

limited complexity

• Causal structure: good fit for forecasting

Application 1: NWP blending

• Blend different NWP data sources to

improve the NWP performance

Application 2: Spatial-temporal forecasting

• Learn the spatial-temporal correlations

among neighbors

Application 3: forecasting reconciliation

• Reconcile the forecasts from physics-

based model and data-driven model

2. Methodology

Approach 2: spatial-temporal PV forecasting
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Key Algorithm 2: neighbor selection to identify most contributive neighbors

66

Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

66

• Extract cloud events from historical data
• For each day, find the time shift ∆tmax that has the maximum correlation coefficient βmax between target and detector

• Define successful detection when 0 < ∆tmax < Tthre (leading correlation), and successful detection rate φ

Definition of successful detection rate of a detector site for a given target site

Example of correlation calculation

Scenario 
No.

Detector 
sites

Target 
site ∆t Definition

1 Sunny Sunny \ Ignored
2 Cloudy Sunny \ detect
3 Sunny Cloudy \ Fails to detect
4 Cloudy Cloudy ∆tmax ≤ 0 Fails to detect
5 Cloudy Cloudy 0 < ∆tmax ≤ Tthre Successful detection
6 Cloudy Cloudy Tthre < ∆tmax Irrelevant

Different correlation scenarios

𝜑𝜑 =
∑𝑗𝑗=1𝑀𝑀 𝐹𝐹𝑠𝑠𝑗𝑗=5
∑𝑗𝑗=1𝑀𝑀 𝐹𝐹𝑠𝑠𝑗𝑗∈[2,6]

× 100%

2. Methodology

Approach 2: spatial-temporal PV forecasting
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Key Algorithm 2: neighbor selection to identify most contributive neighbors

67

Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

67

• Select optimal detector network that can maximize φ
• Is an NP-hard problem, solved by greedy-search algorithm

Greedy-based optimal detector network searching

Example of detector selection results
Detector network selection algorithm

1. Calculate the time-lagged correlation value and ∆tmax

between the target site and each detector site.
2. Add the detector with the highest correlation value to the

detector network, and remove it from candidates
3. Calculate φ. If φ increases, then go back to 2. Else go to 4
4. Delete 1 site from the selected detector network, and

calculate φ. If φ increases, repeat this process. Else go back
to 2

5. If the detector network stabilized, we can obtain the near-
optimal detector network

2. Methodology

Approach 2: spatial-temporal PV forecasting
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Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

68

• Set TCN working in Seq2seq mode to reconcile forecasts from physics-based model and data-driven model
• Can remove the inconsistency and improve forecasting performance

Forecasting reconciliation framework

2. Methodology
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Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

69

• Can provide “trend” forecasts with hourly granularity
• Forecasting performance can be improved after blending different NWPs by TCN
• Unable to catch intra-hour fluctuations due to the NWP data granularity limitation

Example of physics-based model forecasting results

3. Case study _ Physics based model

Approach 2: spatial-temporal PV forecasting
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Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

70

• Tested on 95 PV sites in NC state for 1h ahead forecasting
• 4 neighbor selection strategies are compared
• 4 deep-learning based spatial-temporal forecasting methods are tested
• TCN with selected neighbors yields the best performance

Example of physics-based model forecasting results

3. Case study _ data-driven model (1h ahead)

Approach 2: spatial-temporal PV forecasting
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Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

71

• Further tested for different forecasting horizons: 5min – 6h
• TCN with selected neighbors has best performance and computation efficiency

Forecasting results under different forecasting horizon

3. Case study _ data-driven model (varying forecasting horizon)

Approach 2: spatial-temporal PV forecasting
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Reference：Li, Yiyan, et al. "A TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network Selection." arXiv preprint arXiv:2111.08809 (2021).

72

• Reconciling forecasts from the two models can correct trend errors , especially after 2 hours.

Error distribution on different forecasting horizons

Examples of forecasting results before and after 
reconciliation

3. Case study _ forecasting results reconciliation

Approach 2: spatial-temporal PV forecasting
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Part 3: Reinforcement Learning based 
Volt/var Control
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Stage-1: Individual training - learn to react to voltage drops properly
Stage-2 Cooperation among – learn to share the response with the other PV controllers

Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, “Reinforcement Learning for Volt-Var Control: A Novel Two-stage Progressive Training 
Strategy,” Proceeding of the 2022 PES General meeting, Denver, USA, 2022
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𝒓𝒓𝒔𝒔 = 𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑒𝑒𝑀𝑀𝑀𝑀𝐴𝐴 −𝑆𝑆𝑆𝑆𝑜𝑜𝑆𝑆𝑒𝑒𝐷𝐷𝑀𝑀𝑀𝑀𝐴𝐴 𝑆𝑆𝐷𝐷𝑀𝑀 = � 10−3 , 𝑆𝑆𝑖𝑖𝑡𝑡 ≤ 𝑆𝑆𝑡𝑡𝑡

0 , 𝑜𝑜𝑡𝑡𝑜𝑒𝑒𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒

𝑆𝑆1,𝑖𝑖 = 𝒓𝒓𝒔𝒔 − 𝑀𝑀𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖 + 𝑆𝑆𝐷𝐷𝑀𝑀

𝑀𝑀𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖 = 𝑜𝑜𝑐𝑐𝑟𝑟𝑠𝑠𝑡𝑡 × 𝑄𝑄𝑖𝑖𝑡𝑡

Do nothing is a 
good strategy

Reward need to 
consider the cost 
of taking action

Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, “Reinforcement Learning for Volt-Var Control: A Novel Two-stage Progressive Training 
Strategy,” Proceeding of the 2022 PES General meeting, Denver, USA, 2022



FREEDM Center 
GridWrx Lab Stage 2: Cooperative Training

76

• Reward allocation
• Goal: decide action magnitude for cooperation

Reward need to be shared 
properly among agents to know 
who will take more/less actions

Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, “Reinforcement Learning for Volt-Var Control: A Novel Two-stage Progressive Training 
Strategy,” Proceeding of the 2022 PES General meeting, Denver, USA, 2022
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Part 3: Conclusion
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FREEDM Center 
GridWrx Lab Conclusions

• High-fidelity Digital Twins are important for developing new grid support functions
– Benefits: compared with field tests, testing on digital twins are safer, cheaper, faster, and scalable
– Challenges: Data requirements are high (require realistic network topologies; require PV and load 

data sets for populating the network models; require manufacture data sheets; require field tests for 
benchmarking the model dynamic responses; ….)

• Challenges for Developing Machine Learning Applications:
– High-fidelity

• Data scarcity  are the result representative?
• Visual inspections is not sufficient to tell fake/real  How to evaluate realisticness?

– Trustworthy applications
• Explainable, repeatable, and replicable (especially if we need to take actions)
• Human-machine interface (when, how often, and who)
• Eliminate bias in data sets (e.g., data availability is geographically, demographically uneven)
• Cyber security considerations

– Open sources to accelerate the development 

10/18/2022 Dr. Ning Lu ( )             North Caroline State University        陆宁 78
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Ning Lu, Ph.D.
Professor
NC State University
Dept. of Electrical and Computer Engineering
100-29 Keystone, Campus Box 7911, 
Raleigh, NC 27695-7911

Email: nlu2@ncsu.edu
Homepage: https://sites.google.com/a/ncsu.edu/ninglu/home
Publications: https://sites.google.com/a/ncsu.edu/ninglu/mypublicatons?authuser=0
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